import spaces import gradio as gr # Use a pipeline as a high-level helper import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, AutoModelForCausalLM, AutoTokenizer @spaces.GPU(duration=120) def transcribe_audio(audio, model_id): if audio is None: return "Please upload an audio file." if model_id is None: return "Please select a model." device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=25, batch_size=16, torch_dtype=torch_dtype, device=device, ) result = pipe(audio) return result["text"] @spaces.GPU(duration=180) def proofread(prompt, text): if text is None: return "Please provide the transcribed text for proofreading." device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 prompt = "用繁體中文整理這段文字,在最後加上整段文字的重點。" model = AutoModelForCausalLM.from_pretrained("hfl/llama-3-chinese-8b-instruct-v3") tokenizer = AutoTokenizer.from_pretrained("hfl/llama-3-chinese-8b-instruct-v3") model.to(device) # Perform proofreading using the model input_text = prompt + text input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device) output = model.generate(input_ids, max_length=len(input_ids[0])+50, num_return_sequences=1, temperature=0.7) proofread_text = tokenizer.decode(output[0], skip_special_tokens=True) return proofread_text with gr.Blocks() as demo: gr.Markdown(""" # Audio Transcription and Proofreading 1. Upload an audio file (Wait for the file to be fully loaded first) 2. Select a model for transcription 3. Proofread the transcribed text """) with gr.Row(): audio = gr.Audio(sources="upload", type="filepath") model_dropdown = gr.Dropdown(choices=["openai/whisper-large-v3", "alvanlii/whisper-small-cantonese"], value="openai/whisper-large-v3") transcribe_button = gr.Button("Transcribe") transcribed_text = gr.Textbox(label="Transcribed Text") proofread_button = gr.Button("Proofread") proofread_output = gr.Textbox(label="Proofread Text") transcribe_button.click(transcribe_audio, inputs=[audio, model_dropdown], outputs=transcribed_text) proofread_button.click(proofread, inputs=[transcribed_text], outputs=proofread_output) transcribed_text.change(proofread, inputs=["", transcribed_text], outputs=proofread_output) demo.launch()