# import spaces import gradio as gr # Use a pipeline as a high-level helper import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline # from datasets import load_dataset # @spaces.GPU(duration=120) def transcribe_audio(audio, model_id): if audio is None: return "Please upload an audio file." device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=25, batch_size=16, torch_dtype=torch_dtype, device=device, ) result = pipe(audio) return result["text"] demo = gr.Interface(fn=transcribe_audio, inputs=[gr.Audio(sources="upload", type="filepath"), gr.Dropdown(choices=["openai/whisper-large-v3", "alvanlii/whisper-small-cantonese"])], outputs="text") demo.launch()