import spaces import gradio as gr # Use a pipeline as a high-level helper import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline # from datasets import load_dataset @spaces.GPU(duration=120) def transcribe_audio(audio, model_id): if audio is None: return "Please upload an audio file." device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=25, batch_size=16, torch_dtype=torch_dtype, device=device, ) result = pipe(audio) return result["text"] @spaces.GPU(duration=60) def proofread(text): if text is None: return "Please provide the transcribed text for proofreading." device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model = AutoModelForCausalLM.from_pretrained("hfl/llama-3-chinese-8b-instruct-v3") model.to(device) # Perform proofreading using the model input_ids = model.tokenizer.encode(text, return_tensors="pt").to(device) output = model.generate(input_ids, max_length=len(input_ids[0])+50, num_return_sequences=1, temperature=0.7) proofread_text = model.tokenizer.decode(output[0], skip_special_tokens=True) return proofread_text demo = gr.Interface( [transcribe_audio, proofread], [ gr.Audio(sources="upload", type="filepath"), gr.Dropdown(choices=["openai/whisper-large-v3", "alvanlii/whisper-small-cantonese"]), "text" ], "text", allow_flagging="never", title="Audio Transcription and Proofreading", description="Upload an audio file, select a model for transcription, and then proofread the transcribed text.", ) demo.launch()