File size: 14,578 Bytes
b9b435f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import math

import tensorflow as tf
import tfimm
import efficientnet
import efficientnet.tfkeras as efnv1
import keras_efficientnet_v2 as efnv2
import tensorflow_hub as hub


class DotDict(dict):
    """dot.notation access to dictionary attributes

    Reference:
    https://stackoverflow.com/questions/2352181/how-to-use-a-dot-to-access-members-of-dictionary/23689767#23689767
    """
    __getattr__ = dict.get  # returns None if missing key, don't use getattr() with default!
    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__

    
def get_cfg(rst_file):
    json_file = str(rst_file).replace('.h5', '_config.json')
    config_dict = json.load(open(json_file))
    return DotDict(config_dict)


def get_embeddings(img, embed_model):
    inp = img[None, ...]
    embeddings = embed_model.predict(inp, verbose=1, batch_size=1, workers=4, use_multiprocessing=True)
    return embeddings


# Train embeddings have to be re-ordered: embeddings were concatenated (train, valid) 
# in the training notebook and the valid fold is different for each ensemble model.
FOLDS = 10
shards, n_total = [], 0
for fold in range(10):
    n_img = 5104 if fold <= 2 else 5103
    shards.append(list(range(n_total, n_total + n_img)))
    n_total += n_img
assert n_total == 51033

def get_train_idx(use_fold):
    "Return embedding index that restores the order of images in the tfrec files."
    train_folds = [i for i in range(10) if i % FOLDS != use_fold]
    valid_folds = [i for i in range(10) if i % FOLDS == use_fold]
    folds = train_folds + valid_folds

    # order of saved embeddings (train + valid)
    train_idx = []
    for fold in folds:
        train_idx.append(shards[fold])
    train_idx = np.concatenate(train_idx)
    
    return np.argsort(train_idx)

use_fold = {
    'efnv1b7_colab216_emb.npz': 4,
    'efnv1b7_colab225_emb.npz': 1,
    'efnv1b7_colab197_emb.npz': 0,
    'efnv1b7_colab227_emb.npz': 5,
    'efnv1b7_v72_emb.npz': 6,
    'efnv1b7_colab229_emb.npz': 9,
    'efnv1b6_colab217_emb.npz': 5,
    'efnv1b6_colab218_emb.npz': 6,
    'hub_efnv2xl_colab221_emb.npz': 8, 
    'hub_efnv2xl_v69_emb.npz': 2,
    'hub_efnv2xl_v73_emb.npz': 0,
    'efnv1b6_colab226_emb.npz': 2,
    'hub_efnv2l_v70_emb.npz': 3,
    'hub_efnv2l_colab200_emb.npz': 2, 
    'hub_efnv2l_colab199_emb.npz': 1,
    'convnext_base_384_in22ft1k_v68_emb.npz': 0,
    'convnext_base_384_in22ft1k_colab220_emb.npz': 9,
    'convnext_base_384_in22ft1k_colab201_emb.npz': 3,  # new
}


def get_comp_embeddings(rst_files):
    "Load embeddings for competition images [n_images, embedding_size]"

    comp_embeddings = []

    for rst_file in rst_files:
        # Get embeddings for all competition images
        npz_file = Path(rst_file.replace('.h5', '_emb.npz')).name
        d = np.load(str(Path(emb_path) / npz_file))
        comp_train_emb = d['train']
        comp_test_emb = d['test']
        
        # Restore original order of comp_train_emb, targets (use targets as fingerprint-check)
        comp_train_idx = get_train_idx(use_fold[npz_file])
        comp_train_emb = comp_train_emb[comp_train_idx, :]
        comp_embs = np.concatenate([comp_train_emb, comp_test_emb], axis=0)
        assert comp_embs.shape == (n_images, embedding_size)

        # Normalize embeddings
        comp_embs_norms = np.linalg.norm(comp_embs, axis=1)
        print("comp_embs norm:", comp_embs_norms.min(), "...", comp_embs_norms.max())
        comp_embs /= comp_embs_norms[:, None]

        comp_embeddings.append(comp_embs)

    return np.concatenate(comp_embeddings, axis=1)


def get_test_embedding(embed_models, sizes):
    test_embedding, similarities = [], []

    for embed_model, size in zip(embed_models, sizes):
        # Get model input
        scaled_img = tf.image.resize(img, size)
        scaled_img = tf.cast(scaled_img, tf.float32) / 255.0
        #print("test image normalized and resized to", scaled_img.shape[:2])

        # Get embedding for test image
        test_emb = get_embeddings(scaled_img, embed_model)  # shape: [1, embedding_size]
        assert test_emb.shape == (1, embedding_size)

        # Normalize embeddings
        test_emb_norm = np.linalg.norm(test_emb, axis=1)
        #print("test_emb norm: ", test_emb_norm[0])
        test_emb /= test_emb_norm[:, None]

        test_embedding.append(test_emb)

    return np.concatenate(test_embedding, axis=1)  # [1, embedding_size]


class ArcMarginProductSubCenter(tf.keras.layers.Layer):
    '''
    Implements large margin arc distance.

    References:
        https://arxiv.org/pdf/1801.07698.pdf
        https://github.com/lyakaap/Landmark2019-1st-and-3rd-Place-Solution/
        https://github.com/haqishen/Google-Landmark-Recognition-2020-3rd-Place-Solution/

    Sub-center version:
        for k > 1, the embedding layer can learn k sub-centers per class
    '''
    def __init__(self, n_classes, s=30, m=0.50, k=3, easy_margin=False,
                 ls_eps=0.0, **kwargs):

        super(ArcMarginProductSubCenter, self).__init__(**kwargs)

        self.n_classes = n_classes
        self.s = s
        self.m = m
        self.k = k
        self.ls_eps = ls_eps
        self.easy_margin = easy_margin
        self.cos_m = tf.math.cos(m)
        self.sin_m = tf.math.sin(m)
        self.th = tf.math.cos(math.pi - m)
        self.mm = tf.math.sin(math.pi - m) * m

    def get_config(self):

        config = super().get_config().copy()
        config.update({
            'n_classes': self.n_classes,
            's': self.s,
            'm': self.m,
            'k': self.k,
            'ls_eps': self.ls_eps,
            'easy_margin': self.easy_margin,
        })
        return config

    def build(self, input_shape):
        super(ArcMarginProductSubCenter, self).build(input_shape[0])

        self.W = self.add_weight(
            name='W',
            shape=(int(input_shape[0][-1]), self.n_classes * self.k),
            initializer='glorot_uniform',
            dtype='float32',
            trainable=True)

    def call(self, inputs):
        X, y = inputs
        y = tf.cast(y, dtype=tf.int32)
        cosine_all = tf.matmul(
            tf.math.l2_normalize(X, axis=1),
            tf.math.l2_normalize(self.W, axis=0)
        )
        if self.k > 1:
            cosine_all = tf.reshape(cosine_all, [-1, self.n_classes, self.k])
            cosine = tf.math.reduce_max(cosine_all, axis=2)
        else:
            cosine = cosine_all
        sine = tf.math.sqrt(1.0 - tf.math.pow(cosine, 2))
        phi = cosine * self.cos_m - sine * self.sin_m
        if self.easy_margin:
            phi = tf.where(cosine > 0, phi, cosine)
        else:
            phi = tf.where(cosine > self.th, phi, cosine - self.mm)
        one_hot = tf.cast(
            tf.one_hot(y, depth=self.n_classes),
            dtype=cosine.dtype
        )
        if self.ls_eps > 0:
            one_hot = (1 - self.ls_eps) * one_hot + self.ls_eps / self.n_classes

        output = (one_hot * phi) + ((1.0 - one_hot) * cosine)
        output *= self.s
        return output


TFHUB = {
    'hub_efnv2s': "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_s/feature_vector/2",
    'hub_efnv2m': "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_m/feature_vector/2",
    'hub_efnv2l': "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_l/feature_vector/2",
    'hub_efnv2xl': "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_xl/feature_vector/2",
    'bit_m-r50x1': "https://tfhub.dev/google/bit/m-r50x1/1",
    'bit_m-r50x3': "https://tfhub.dev/google/bit/m-r50x3/1",
    'bit_m-r101x1': "https://tfhub.dev/google/bit/m-r101x1/1",
    'bit_m-r101x3': "https://tfhub.dev/google/bit/m-r101x3/1",
    'bit_m-r152x4': "https://tfhub.dev/google/bit/m-r152x4/1",
}


def get_model(cfg):
    aux_arcface = False  # Chris Deotte suggested this
    if cfg.head == 'arcface2':
        head = ArcMarginPenaltyLogists
    elif cfg.head == 'arcface':
        head = ArcMarginProductSubCenter
    elif cfg.head == 'addface':
        head = AddMarginProductSubCenter
    else:
        assert False, "INVALID HEAD"

    if cfg.adaptive_margin:
        # define adaptive margins depending on class frequencies (dynamic margins)
        df = pd.read_csv(f'{project_dir}/train.csv')
        fewness = df['individual_id'].value_counts().sort_index() ** (-1/4)
        fewness -= fewness.min()
        fewness /= fewness.max() - fewness.min()
        adaptive_margin = cfg.margin_min + fewness * (cfg.margin_max - cfg.margin_min)

        # align margins with targets
        splits_path = '/kaggle/input/happywhale-splits'
        with open (f'{splits_path}/individual_ids.json', "r") as f:
            target_encodings = json.loads(f.read())  # individual_id: index
        individual_ids = pd.Series(target_encodings).sort_values().index.values
        adaptive_margin = adaptive_margin.loc[individual_ids].values.astype(np.float32)
        
    if cfg.arch_name.startswith('efnv1'):
        EFN = {'efnv1b0': efnv1.EfficientNetB0, 'efnv1b1': efnv1.EfficientNetB1, 
               'efnv1b2': efnv1.EfficientNetB2, 'efnv1b3': efnv1.EfficientNetB3,
               'efnv1b4': efnv1.EfficientNetB4, 'efnv1b5': efnv1.EfficientNetB5, 
               'efnv1b6': efnv1.EfficientNetB6, 'efnv1b7': efnv1.EfficientNetB7}

    if cfg.arch_name.startswith('efnv2'):
        EFN = {'efnv2s': efnv2.EfficientNetV2S, 'efnv2m': efnv2.EfficientNetV2M,
               'efnv2l': efnv2.EfficientNetV2L, 'efnv2xl': efnv2.EfficientNetV2XL}


    with strategy.scope():

        margin = head(
            n_classes = cfg.N_CLASSES,
            s = 30,
            m = adaptive_margin if cfg.adaptive_margin else 0.3,
            k = cfg.subcenters or 1,
            easy_margin = False,
            name=f'head/{cfg.head}', 
            dtype='float32')

        inp = tf.keras.layers.Input(shape = [*cfg.IMAGE_SIZE, 3], name = 'inp1')
        label = tf.keras.layers.Input(shape = (), name = 'inp2')
        if aux_arcface:
            label2 = tf.keras.layers.Input(shape = (), name = 'inp3')

        if cfg.arch_name.startswith('efnv1'):
            x = EFN[cfg.arch_name](weights=cfg.pretrained, include_top=False)(inp)
            if cfg.pool == 'flatten':
                embed = tf.keras.layers.Flatten()(x)
            elif cfg.pool == 'fc':
                embed = tf.keras.layers.Flatten()(x)
                embed = tf.keras.layers.Dropout(0.1)(embed)
                embed = tf.keras.layers.Dense(1024)(embed)
            elif cfg.pool == 'gem':
                embed = GeMPoolingLayer(train_p=True)(x)
            elif cfg.pool == 'concat':
                embed = tf.keras.layers.concatenate([tf.keras.layers.GlobalAveragePooling2D()(x),
                                                     tf.keras.layers.GlobalAveragePooling2D()(x)])
            elif cfg.pool == 'max':
                embed = tf.keras.layers.GlobalMaxPooling2D()(x)
            else:
                embed = tf.keras.layers.GlobalAveragePooling2D()(x)
            
        elif cfg.arch_name.startswith('efnv2'):
            x = EFN[cfg.arch_name](input_shape=(None, None, 3), num_classes=0,
                                   pretrained=cfg.pretrained)(inp)
            if cfg.pool == 'flatten':
                embed = tf.keras.layers.Flatten()(x)
            elif cfg.pool == 'fc':
                embed = tf.keras.layers.Flatten()(x)
                embed = tf.keras.layers.Dropout(0.1)(embed)
                embed = tf.keras.layers.Dense(1024)(embed)
            elif cfg.pool == 'gem':
                embed = GeMPoolingLayer(train_p=True)(x)
            elif cfg.pool == 'concat':
                embed = tf.keras.layers.concatenate([tf.keras.layers.GlobalAveragePooling2D()(x),
                                                     tf.keras.layers.GlobalAveragePooling2D()(x)])
            elif cfg.pool == 'max':
                embed = tf.keras.layers.GlobalMaxPooling2D()(x)
            else:
                embed = tf.keras.layers.GlobalAveragePooling2D()(x)

        elif cfg.arch_name in TFHUB:
            # tfhub models cannot be modified => Pooling cannot be changed!
            url = TFHUB[cfg.arch_name]
            model = hub.KerasLayer(url, trainable=True)
            embed = model(inp)
            #print(f"{cfg.arch_name} from tfhub")
            assert cfg.pool in [None, False, 'avg', ''], 'tfhub model, no custom pooling supported!'
            
        elif cfg.arch_name in tfimm.list_models(pretrained="timm"):
            #print(f"{cfg.arch_name} from tfimm")
            #embed = tfimm.create_model(cfg.arch_name, pretrained="timm", nb_classes=0)(inp)
            embed = tfimm.create_model(cfg.arch_name, pretrained=None, nb_classes=0)(inp)
            # create_model(nb_classes=0) includes pooling as last layer
        
        if len(cfg.dropout_ps) > 0:
            # Chris Deotte posted model code without Dropout/FC1 after pooling
            embed = tf.keras.layers.Dropout(cfg.dropout_ps[0])(embed)
            embed = tf.keras.layers.Dense(1024)(embed)       # tunable embedding size
        embed = tf.keras.layers.BatchNormalization()(embed)  # missing in public notebooks
        x = margin([embed, label])

        output = tf.keras.layers.Softmax(dtype='float32', name='arc' if cfg.aux_loss else None)(x)
        
        if cfg.aux_loss and aux_arcface:
            # Use 2nd arcface head for species (aux loss)
            head2 = ArcMarginProductSubCenter
            margin2 = head(
                n_classes = cfg.n_species,
                s = 30,
                m = 0.3,
                k = 1,
                easy_margin = False,
                name=f'auxhead/{cfg.head}', 
                dtype='float32')
            aux_features = margin2([embed, label2])
            aux_output = tf.keras.layers.Softmax(dtype='float32', name='aux')(aux_features)

        elif cfg.aux_loss:
            aux_features = tf.keras.layers.Dense(cfg.n_species)(embed)
            aux_output = tf.keras.layers.Softmax(dtype='float32', name='aux')(aux_features)
        inputs = [inp, label, label2] if (cfg.aux_loss and aux_arcface) else [inp, label]
        outputs = (output, aux_output) if cfg.aux_loss else [output]
        
        model = tf.keras.models.Model(inputs=inputs, outputs=outputs)
        embed_model = tf.keras.models.Model(inputs=inp, outputs=embed)
        
        opt = tf.keras.optimizers.Adam(learning_rate=cfg.LR)
        if cfg.FREEZE_BATCH_NORM:
            freeze_BN(model)
        
        return model, embed_model