Spaces:
Sleeping
Sleeping
File size: 14,578 Bytes
b9b435f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
import math
import tensorflow as tf
import tfimm
import efficientnet
import efficientnet.tfkeras as efnv1
import keras_efficientnet_v2 as efnv2
import tensorflow_hub as hub
class DotDict(dict):
"""dot.notation access to dictionary attributes
Reference:
https://stackoverflow.com/questions/2352181/how-to-use-a-dot-to-access-members-of-dictionary/23689767#23689767
"""
__getattr__ = dict.get # returns None if missing key, don't use getattr() with default!
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
def get_cfg(rst_file):
json_file = str(rst_file).replace('.h5', '_config.json')
config_dict = json.load(open(json_file))
return DotDict(config_dict)
def get_embeddings(img, embed_model):
inp = img[None, ...]
embeddings = embed_model.predict(inp, verbose=1, batch_size=1, workers=4, use_multiprocessing=True)
return embeddings
# Train embeddings have to be re-ordered: embeddings were concatenated (train, valid)
# in the training notebook and the valid fold is different for each ensemble model.
FOLDS = 10
shards, n_total = [], 0
for fold in range(10):
n_img = 5104 if fold <= 2 else 5103
shards.append(list(range(n_total, n_total + n_img)))
n_total += n_img
assert n_total == 51033
def get_train_idx(use_fold):
"Return embedding index that restores the order of images in the tfrec files."
train_folds = [i for i in range(10) if i % FOLDS != use_fold]
valid_folds = [i for i in range(10) if i % FOLDS == use_fold]
folds = train_folds + valid_folds
# order of saved embeddings (train + valid)
train_idx = []
for fold in folds:
train_idx.append(shards[fold])
train_idx = np.concatenate(train_idx)
return np.argsort(train_idx)
use_fold = {
'efnv1b7_colab216_emb.npz': 4,
'efnv1b7_colab225_emb.npz': 1,
'efnv1b7_colab197_emb.npz': 0,
'efnv1b7_colab227_emb.npz': 5,
'efnv1b7_v72_emb.npz': 6,
'efnv1b7_colab229_emb.npz': 9,
'efnv1b6_colab217_emb.npz': 5,
'efnv1b6_colab218_emb.npz': 6,
'hub_efnv2xl_colab221_emb.npz': 8,
'hub_efnv2xl_v69_emb.npz': 2,
'hub_efnv2xl_v73_emb.npz': 0,
'efnv1b6_colab226_emb.npz': 2,
'hub_efnv2l_v70_emb.npz': 3,
'hub_efnv2l_colab200_emb.npz': 2,
'hub_efnv2l_colab199_emb.npz': 1,
'convnext_base_384_in22ft1k_v68_emb.npz': 0,
'convnext_base_384_in22ft1k_colab220_emb.npz': 9,
'convnext_base_384_in22ft1k_colab201_emb.npz': 3, # new
}
def get_comp_embeddings(rst_files):
"Load embeddings for competition images [n_images, embedding_size]"
comp_embeddings = []
for rst_file in rst_files:
# Get embeddings for all competition images
npz_file = Path(rst_file.replace('.h5', '_emb.npz')).name
d = np.load(str(Path(emb_path) / npz_file))
comp_train_emb = d['train']
comp_test_emb = d['test']
# Restore original order of comp_train_emb, targets (use targets as fingerprint-check)
comp_train_idx = get_train_idx(use_fold[npz_file])
comp_train_emb = comp_train_emb[comp_train_idx, :]
comp_embs = np.concatenate([comp_train_emb, comp_test_emb], axis=0)
assert comp_embs.shape == (n_images, embedding_size)
# Normalize embeddings
comp_embs_norms = np.linalg.norm(comp_embs, axis=1)
print("comp_embs norm:", comp_embs_norms.min(), "...", comp_embs_norms.max())
comp_embs /= comp_embs_norms[:, None]
comp_embeddings.append(comp_embs)
return np.concatenate(comp_embeddings, axis=1)
def get_test_embedding(embed_models, sizes):
test_embedding, similarities = [], []
for embed_model, size in zip(embed_models, sizes):
# Get model input
scaled_img = tf.image.resize(img, size)
scaled_img = tf.cast(scaled_img, tf.float32) / 255.0
#print("test image normalized and resized to", scaled_img.shape[:2])
# Get embedding for test image
test_emb = get_embeddings(scaled_img, embed_model) # shape: [1, embedding_size]
assert test_emb.shape == (1, embedding_size)
# Normalize embeddings
test_emb_norm = np.linalg.norm(test_emb, axis=1)
#print("test_emb norm: ", test_emb_norm[0])
test_emb /= test_emb_norm[:, None]
test_embedding.append(test_emb)
return np.concatenate(test_embedding, axis=1) # [1, embedding_size]
class ArcMarginProductSubCenter(tf.keras.layers.Layer):
'''
Implements large margin arc distance.
References:
https://arxiv.org/pdf/1801.07698.pdf
https://github.com/lyakaap/Landmark2019-1st-and-3rd-Place-Solution/
https://github.com/haqishen/Google-Landmark-Recognition-2020-3rd-Place-Solution/
Sub-center version:
for k > 1, the embedding layer can learn k sub-centers per class
'''
def __init__(self, n_classes, s=30, m=0.50, k=3, easy_margin=False,
ls_eps=0.0, **kwargs):
super(ArcMarginProductSubCenter, self).__init__(**kwargs)
self.n_classes = n_classes
self.s = s
self.m = m
self.k = k
self.ls_eps = ls_eps
self.easy_margin = easy_margin
self.cos_m = tf.math.cos(m)
self.sin_m = tf.math.sin(m)
self.th = tf.math.cos(math.pi - m)
self.mm = tf.math.sin(math.pi - m) * m
def get_config(self):
config = super().get_config().copy()
config.update({
'n_classes': self.n_classes,
's': self.s,
'm': self.m,
'k': self.k,
'ls_eps': self.ls_eps,
'easy_margin': self.easy_margin,
})
return config
def build(self, input_shape):
super(ArcMarginProductSubCenter, self).build(input_shape[0])
self.W = self.add_weight(
name='W',
shape=(int(input_shape[0][-1]), self.n_classes * self.k),
initializer='glorot_uniform',
dtype='float32',
trainable=True)
def call(self, inputs):
X, y = inputs
y = tf.cast(y, dtype=tf.int32)
cosine_all = tf.matmul(
tf.math.l2_normalize(X, axis=1),
tf.math.l2_normalize(self.W, axis=0)
)
if self.k > 1:
cosine_all = tf.reshape(cosine_all, [-1, self.n_classes, self.k])
cosine = tf.math.reduce_max(cosine_all, axis=2)
else:
cosine = cosine_all
sine = tf.math.sqrt(1.0 - tf.math.pow(cosine, 2))
phi = cosine * self.cos_m - sine * self.sin_m
if self.easy_margin:
phi = tf.where(cosine > 0, phi, cosine)
else:
phi = tf.where(cosine > self.th, phi, cosine - self.mm)
one_hot = tf.cast(
tf.one_hot(y, depth=self.n_classes),
dtype=cosine.dtype
)
if self.ls_eps > 0:
one_hot = (1 - self.ls_eps) * one_hot + self.ls_eps / self.n_classes
output = (one_hot * phi) + ((1.0 - one_hot) * cosine)
output *= self.s
return output
TFHUB = {
'hub_efnv2s': "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_s/feature_vector/2",
'hub_efnv2m': "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_m/feature_vector/2",
'hub_efnv2l': "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_l/feature_vector/2",
'hub_efnv2xl': "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_xl/feature_vector/2",
'bit_m-r50x1': "https://tfhub.dev/google/bit/m-r50x1/1",
'bit_m-r50x3': "https://tfhub.dev/google/bit/m-r50x3/1",
'bit_m-r101x1': "https://tfhub.dev/google/bit/m-r101x1/1",
'bit_m-r101x3': "https://tfhub.dev/google/bit/m-r101x3/1",
'bit_m-r152x4': "https://tfhub.dev/google/bit/m-r152x4/1",
}
def get_model(cfg):
aux_arcface = False # Chris Deotte suggested this
if cfg.head == 'arcface2':
head = ArcMarginPenaltyLogists
elif cfg.head == 'arcface':
head = ArcMarginProductSubCenter
elif cfg.head == 'addface':
head = AddMarginProductSubCenter
else:
assert False, "INVALID HEAD"
if cfg.adaptive_margin:
# define adaptive margins depending on class frequencies (dynamic margins)
df = pd.read_csv(f'{project_dir}/train.csv')
fewness = df['individual_id'].value_counts().sort_index() ** (-1/4)
fewness -= fewness.min()
fewness /= fewness.max() - fewness.min()
adaptive_margin = cfg.margin_min + fewness * (cfg.margin_max - cfg.margin_min)
# align margins with targets
splits_path = '/kaggle/input/happywhale-splits'
with open (f'{splits_path}/individual_ids.json', "r") as f:
target_encodings = json.loads(f.read()) # individual_id: index
individual_ids = pd.Series(target_encodings).sort_values().index.values
adaptive_margin = adaptive_margin.loc[individual_ids].values.astype(np.float32)
if cfg.arch_name.startswith('efnv1'):
EFN = {'efnv1b0': efnv1.EfficientNetB0, 'efnv1b1': efnv1.EfficientNetB1,
'efnv1b2': efnv1.EfficientNetB2, 'efnv1b3': efnv1.EfficientNetB3,
'efnv1b4': efnv1.EfficientNetB4, 'efnv1b5': efnv1.EfficientNetB5,
'efnv1b6': efnv1.EfficientNetB6, 'efnv1b7': efnv1.EfficientNetB7}
if cfg.arch_name.startswith('efnv2'):
EFN = {'efnv2s': efnv2.EfficientNetV2S, 'efnv2m': efnv2.EfficientNetV2M,
'efnv2l': efnv2.EfficientNetV2L, 'efnv2xl': efnv2.EfficientNetV2XL}
with strategy.scope():
margin = head(
n_classes = cfg.N_CLASSES,
s = 30,
m = adaptive_margin if cfg.adaptive_margin else 0.3,
k = cfg.subcenters or 1,
easy_margin = False,
name=f'head/{cfg.head}',
dtype='float32')
inp = tf.keras.layers.Input(shape = [*cfg.IMAGE_SIZE, 3], name = 'inp1')
label = tf.keras.layers.Input(shape = (), name = 'inp2')
if aux_arcface:
label2 = tf.keras.layers.Input(shape = (), name = 'inp3')
if cfg.arch_name.startswith('efnv1'):
x = EFN[cfg.arch_name](weights=cfg.pretrained, include_top=False)(inp)
if cfg.pool == 'flatten':
embed = tf.keras.layers.Flatten()(x)
elif cfg.pool == 'fc':
embed = tf.keras.layers.Flatten()(x)
embed = tf.keras.layers.Dropout(0.1)(embed)
embed = tf.keras.layers.Dense(1024)(embed)
elif cfg.pool == 'gem':
embed = GeMPoolingLayer(train_p=True)(x)
elif cfg.pool == 'concat':
embed = tf.keras.layers.concatenate([tf.keras.layers.GlobalAveragePooling2D()(x),
tf.keras.layers.GlobalAveragePooling2D()(x)])
elif cfg.pool == 'max':
embed = tf.keras.layers.GlobalMaxPooling2D()(x)
else:
embed = tf.keras.layers.GlobalAveragePooling2D()(x)
elif cfg.arch_name.startswith('efnv2'):
x = EFN[cfg.arch_name](input_shape=(None, None, 3), num_classes=0,
pretrained=cfg.pretrained)(inp)
if cfg.pool == 'flatten':
embed = tf.keras.layers.Flatten()(x)
elif cfg.pool == 'fc':
embed = tf.keras.layers.Flatten()(x)
embed = tf.keras.layers.Dropout(0.1)(embed)
embed = tf.keras.layers.Dense(1024)(embed)
elif cfg.pool == 'gem':
embed = GeMPoolingLayer(train_p=True)(x)
elif cfg.pool == 'concat':
embed = tf.keras.layers.concatenate([tf.keras.layers.GlobalAveragePooling2D()(x),
tf.keras.layers.GlobalAveragePooling2D()(x)])
elif cfg.pool == 'max':
embed = tf.keras.layers.GlobalMaxPooling2D()(x)
else:
embed = tf.keras.layers.GlobalAveragePooling2D()(x)
elif cfg.arch_name in TFHUB:
# tfhub models cannot be modified => Pooling cannot be changed!
url = TFHUB[cfg.arch_name]
model = hub.KerasLayer(url, trainable=True)
embed = model(inp)
#print(f"{cfg.arch_name} from tfhub")
assert cfg.pool in [None, False, 'avg', ''], 'tfhub model, no custom pooling supported!'
elif cfg.arch_name in tfimm.list_models(pretrained="timm"):
#print(f"{cfg.arch_name} from tfimm")
#embed = tfimm.create_model(cfg.arch_name, pretrained="timm", nb_classes=0)(inp)
embed = tfimm.create_model(cfg.arch_name, pretrained=None, nb_classes=0)(inp)
# create_model(nb_classes=0) includes pooling as last layer
if len(cfg.dropout_ps) > 0:
# Chris Deotte posted model code without Dropout/FC1 after pooling
embed = tf.keras.layers.Dropout(cfg.dropout_ps[0])(embed)
embed = tf.keras.layers.Dense(1024)(embed) # tunable embedding size
embed = tf.keras.layers.BatchNormalization()(embed) # missing in public notebooks
x = margin([embed, label])
output = tf.keras.layers.Softmax(dtype='float32', name='arc' if cfg.aux_loss else None)(x)
if cfg.aux_loss and aux_arcface:
# Use 2nd arcface head for species (aux loss)
head2 = ArcMarginProductSubCenter
margin2 = head(
n_classes = cfg.n_species,
s = 30,
m = 0.3,
k = 1,
easy_margin = False,
name=f'auxhead/{cfg.head}',
dtype='float32')
aux_features = margin2([embed, label2])
aux_output = tf.keras.layers.Softmax(dtype='float32', name='aux')(aux_features)
elif cfg.aux_loss:
aux_features = tf.keras.layers.Dense(cfg.n_species)(embed)
aux_output = tf.keras.layers.Softmax(dtype='float32', name='aux')(aux_features)
inputs = [inp, label, label2] if (cfg.aux_loss and aux_arcface) else [inp, label]
outputs = (output, aux_output) if cfg.aux_loss else [output]
model = tf.keras.models.Model(inputs=inputs, outputs=outputs)
embed_model = tf.keras.models.Model(inputs=inp, outputs=embed)
opt = tf.keras.optimizers.Adam(learning_rate=cfg.LR)
if cfg.FREEZE_BATCH_NORM:
freeze_BN(model)
return model, embed_model
|