happywhale-demo / utils.py
yellowdolphin's picture
rollback to py3.7
dd7149e verified
raw
history blame
12 kB
import math
import json
import numpy as np
import tensorflow as tf
import tfimm
import efficientnet.tfkeras as efnv1
import keras_efficientnet_v2 as efnv2
import tensorflow_hub as hub
embedding_size = 1024
n_images = 51033 + 27956
class DotDict(dict):
"""dot.notation access to dictionary attributes
Reference:
https://stackoverflow.com/questions/2352181/how-to-use-a-dot-to-access-members-of-dictionary/23689767#23689767
"""
__getattr__ = dict.get # returns None if missing key, don't use getattr() with default!
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
def get_cfg(json_file):
json_file = str(json_file)
config_dict = json.load(open(json_file))
return DotDict(config_dict)
def get_embeddings(img, embed_model):
inp = img[None, ...]
embeddings = embed_model.predict(inp, verbose=1, batch_size=1, workers=4, use_multiprocessing=True)
return embeddings
# Train embeddings have to be re-ordered: embeddings were concatenated (train, valid)
# in the training notebook and the valid fold is different for each ensemble model.
FOLDS = 10
shards, n_total = [], 0
for fold in range(10):
n_img = 5104 if fold <= 2 else 5103
shards.append(list(range(n_total, n_total + n_img)))
n_total += n_img
assert n_total == 51033
def get_train_idx(use_fold):
"Return embedding index that restores the order of images in the tfrec files."
train_folds = [i for i in range(10) if i % FOLDS != use_fold]
valid_folds = [i for i in range(10) if i % FOLDS == use_fold]
folds = train_folds + valid_folds
# order of saved embeddings (train + valid)
train_idx = []
for fold in folds:
train_idx.append(shards[fold])
train_idx = np.concatenate(train_idx)
return np.argsort(train_idx)
def get_comp_embeddings(emb_files, use_folds):
"Load embeddings for competition images [n_images, embedding_size]"
comp_embeddings = []
for npz_file, use_fold in zip(emb_files, use_folds):
# Get embeddings for all competition images
d = np.load(str(npz_file))
comp_train_emb = d['train']
comp_test_emb = d['test']
# Restore original order of comp_train_emb, targets (use targets as fingerprint-check)
comp_train_idx = get_train_idx(use_fold)
comp_train_emb = comp_train_emb[comp_train_idx, :]
comp_embs = np.concatenate([comp_train_emb, comp_test_emb], axis=0)
assert comp_embs.shape == (n_images, embedding_size)
# Normalize embeddings
comp_embs_norms = np.linalg.norm(comp_embs, axis=1)
print("comp_embs norm:", comp_embs_norms.min(), "...", comp_embs_norms.max())
comp_embs /= comp_embs_norms[:, None]
comp_embeddings.append(comp_embs)
return np.concatenate(comp_embeddings, axis=1)
def get_test_embedding(image, embed_models, sizes):
test_embedding = []
for embed_model, size in zip(embed_models, sizes):
# Get model input
scaled_image = tf.image.resize(image, size)
scaled_image = tf.cast(scaled_image, tf.float32) / 255.0
# Get embedding for test image
test_emb = get_embeddings(scaled_image, embed_model) # shape: [1, embedding_size]
assert test_emb.shape == (1, embedding_size)
# Normalize embeddings
test_emb_norm = np.linalg.norm(test_emb, axis=1)
test_emb /= test_emb_norm[:, None]
test_embedding.append(test_emb)
return np.concatenate(test_embedding, axis=1) # [1, embedding_size]
def p2logit(x):
return np.log(x / (1 - x))
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def get_confidence(similarity, threshold):
"Calculate confidence in known/unknown prediction"
if similarity <= 0:
return 0
logit_sim = p2logit(similarity)
logit_threshold = p2logit(threshold)
return sigmoid(abs(logit_sim - logit_threshold))
class ArcMarginProductSubCenter(tf.keras.layers.Layer):
'''
Implements large margin arc distance.
References:
https://arxiv.org/pdf/1801.07698.pdf
https://github.com/lyakaap/Landmark2019-1st-and-3rd-Place-Solution/
https://github.com/haqishen/Google-Landmark-Recognition-2020-3rd-Place-Solution/
Sub-center version:
for k > 1, the embedding layer can learn k sub-centers per class
'''
def __init__(self, n_classes, s=30, m=0.50, k=3, easy_margin=False,
ls_eps=0.0, **kwargs):
super(ArcMarginProductSubCenter, self).__init__(**kwargs)
self.n_classes = n_classes
self.s = s
self.m = m
self.k = k
self.ls_eps = ls_eps
self.easy_margin = easy_margin
self.cos_m = tf.math.cos(m)
self.sin_m = tf.math.sin(m)
self.th = tf.math.cos(math.pi - m)
self.mm = tf.math.sin(math.pi - m) * m
def get_config(self):
config = super().get_config().copy()
config.update({
'n_classes': self.n_classes,
's': self.s,
'm': self.m,
'k': self.k,
'ls_eps': self.ls_eps,
'easy_margin': self.easy_margin,
})
return config
def build(self, input_shape):
super(ArcMarginProductSubCenter, self).build(input_shape[0])
self.W = self.add_weight(
name='W',
shape=(int(input_shape[0][-1]), self.n_classes * self.k),
initializer='glorot_uniform',
dtype='float32',
trainable=True)
def call(self, inputs):
X, y = inputs
y = tf.cast(y, dtype=tf.int32)
cosine_all = tf.matmul(
tf.math.l2_normalize(X, axis=1),
tf.math.l2_normalize(self.W, axis=0)
)
if self.k > 1:
cosine_all = tf.reshape(cosine_all, [-1, self.n_classes, self.k])
cosine = tf.math.reduce_max(cosine_all, axis=2)
else:
cosine = cosine_all
sine = tf.math.sqrt(1.0 - tf.math.pow(cosine, 2))
phi = cosine * self.cos_m - sine * self.sin_m
if self.easy_margin:
phi = tf.where(cosine > 0, phi, cosine)
else:
phi = tf.where(cosine > self.th, phi, cosine - self.mm)
one_hot = tf.cast(
tf.one_hot(y, depth=self.n_classes),
dtype=cosine.dtype
)
if self.ls_eps > 0:
one_hot = (1 - self.ls_eps) * one_hot + self.ls_eps / self.n_classes
output = (one_hot * phi) + ((1.0 - one_hot) * cosine)
output *= self.s
return output
TFHUB = {
'hub_efnv2s': "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_s/feature_vector/2",
'hub_efnv2m': "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_m/feature_vector/2",
'hub_efnv2l': "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_l/feature_vector/2",
'hub_efnv2xl': "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_xl/feature_vector/2",
'bit_m-r50x1': "https://tfhub.dev/google/bit/m-r50x1/1",
'bit_m-r50x3': "https://tfhub.dev/google/bit/m-r50x3/1",
'bit_m-r101x1': "https://tfhub.dev/google/bit/m-r101x1/1",
'bit_m-r101x3': "https://tfhub.dev/google/bit/m-r101x3/1",
'bit_m-r152x4': "https://tfhub.dev/google/bit/m-r152x4/1",
}
def get_model(cfg):
aux_arcface = False # Chris Deotte suggested this
if cfg.head == 'arcface':
head = ArcMarginProductSubCenter
else:
assert False, "INVALID HEAD"
if cfg.adaptive_margin:
raise NotImplementedError
if cfg.arch_name.startswith('efnv1'):
EFN = {'efnv1b0': efnv1.EfficientNetB0, 'efnv1b1': efnv1.EfficientNetB1,
'efnv1b2': efnv1.EfficientNetB2, 'efnv1b3': efnv1.EfficientNetB3,
'efnv1b4': efnv1.EfficientNetB4, 'efnv1b5': efnv1.EfficientNetB5,
'efnv1b6': efnv1.EfficientNetB6, 'efnv1b7': efnv1.EfficientNetB7}
if cfg.arch_name.startswith('efnv2'):
EFN = {'efnv2s': efnv2.EfficientNetV2S, 'efnv2m': efnv2.EfficientNetV2M,
'efnv2l': efnv2.EfficientNetV2L, 'efnv2xl': efnv2.EfficientNetV2XL}
with tf.distribute.get_strategy().scope():
margin = head(
n_classes=cfg.N_CLASSES,
s=30,
m=0.3,
k=cfg.subcenters or 1,
easy_margin=False,
name=f'head/{cfg.head}',
dtype='float32')
inp = tf.keras.layers.Input(shape=[*cfg.IMAGE_SIZE, 3], name='inp1')
label = tf.keras.layers.Input(shape=(), name='inp2')
if aux_arcface:
label2 = tf.keras.layers.Input(shape=(), name='inp3')
if cfg.arch_name.startswith('efnv1'):
x = EFN[cfg.arch_name](weights=cfg.pretrained, include_top=False)(inp)
if cfg.pool == 'flatten':
embed = tf.keras.layers.Flatten()(x)
elif cfg.pool == 'fc':
embed = tf.keras.layers.Flatten()(x)
embed = tf.keras.layers.Dropout(0.1)(embed)
embed = tf.keras.layers.Dense(1024)(embed)
elif cfg.pool == 'concat':
embed = tf.keras.layers.concatenate([tf.keras.layers.GlobalAveragePooling2D()(x),
tf.keras.layers.GlobalAveragePooling2D()(x)])
elif cfg.pool == 'max':
embed = tf.keras.layers.GlobalMaxPooling2D()(x)
else:
embed = tf.keras.layers.GlobalAveragePooling2D()(x)
elif cfg.arch_name.startswith('efnv2'):
x = EFN[cfg.arch_name](input_shape=(None, None, 3), num_classes=0,
pretrained=cfg.pretrained)(inp)
if cfg.pool == 'flatten':
embed = tf.keras.layers.Flatten()(x)
elif cfg.pool == 'fc':
embed = tf.keras.layers.Flatten()(x)
embed = tf.keras.layers.Dropout(0.1)(embed)
embed = tf.keras.layers.Dense(1024)(embed)
elif cfg.pool == 'concat':
embed = tf.keras.layers.concatenate([tf.keras.layers.GlobalAveragePooling2D()(x),
tf.keras.layers.GlobalAveragePooling2D()(x)])
elif cfg.pool == 'max':
embed = tf.keras.layers.GlobalMaxPooling2D()(x)
else:
embed = tf.keras.layers.GlobalAveragePooling2D()(x)
elif cfg.arch_name in TFHUB:
# tfhub models cannot be modified => Pooling cannot be changed!
url = TFHUB[cfg.arch_name]
model = hub.KerasLayer(url, trainable=True)
embed = model(inp)
assert cfg.pool in [None, False, 'avg', ''], 'tfhub model, no custom pooling supported!'
elif cfg.arch_name in tfimm.list_models(pretrained="timm"):
embed = tfimm.create_model(cfg.arch_name, pretrained=None, nb_classes=0)(inp)
if len(cfg.dropout_ps) > 0:
# Chris Deotte posted model code without Dropout/FC1 after pooling
embed = tf.keras.layers.Dropout(cfg.dropout_ps[0])(embed)
embed = tf.keras.layers.Dense(1024)(embed) # tunable embedding size
embed = tf.keras.layers.BatchNormalization()(embed) # missing in public notebooks
x = margin([embed, label])
output = tf.keras.layers.Softmax(dtype='float32', name='arc' if cfg.aux_loss else None)(x)
if cfg.aux_loss:
aux_features = tf.keras.layers.Dense(cfg.n_species)(embed)
aux_output = tf.keras.layers.Softmax(dtype='float32', name='aux')(aux_features)
inputs = [inp, label, label2] if (cfg.aux_loss and aux_arcface) else [inp, label]
outputs = (output, aux_output) if cfg.aux_loss else [output]
model = tf.keras.models.Model(inputs=inputs, outputs=outputs)
embed_model = tf.keras.models.Model(inputs=inp, outputs=embed)
if cfg.FREEZE_BATCH_NORM:
raise NotImplementedError
return model, embed_model