File size: 8,427 Bytes
2528860
 
 
 
 
 
 
 
 
 
 
 
 
8c89222
 
 
 
 
 
 
2528860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c7ca67
2528860
 
 
 
 
 
 
 
7c7ca67
2528860
 
 
 
 
 
 
 
7c7ca67
2528860
6107478
2528860
8c89222
 
 
 
 
 
 
 
 
2528860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import streamlit as st
from dotenv import load_dotenv
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings  # General embeddings from HuggingFace models.
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import LlamaCpp  # For loading transformer models.
from langchain.document_loaders import PyPDFLoader, TextLoader, JSONLoader, CSVLoader
import tempfile # μž„μ‹œ νŒŒμΌμ„ μƒμ„±ν•˜κΈ° μœ„ν•œ λΌμ΄λΈŒλŸ¬λ¦¬μž…λ‹ˆλ‹€.
import os
from huggingface_hub import hf_hub_download # Hugging Face Hubμ—μ„œ λͺ¨λΈμ„ λ‹€μš΄λ‘œλ“œν•˜κΈ° μœ„ν•œ ν•¨μˆ˜μž…λ‹ˆλ‹€.
# from langchain.agents import (
#     create_json_agent,
#     AgentExecutor
# )
# from langchain.agents.agent_toolkits import JsonToolkit
# from langchain.llms.openai import OpenAI
# from langchain.tools.json.tool import JsonSpec

# PDF λ¬Έμ„œλ‘œλΆ€ν„° ν…μŠ€νŠΈλ₯Ό μΆ”μΆœν•˜λŠ” ν•¨μˆ˜μž…λ‹ˆλ‹€.
def get_pdf_text(pdf_docs):
    temp_dir = tempfile.TemporaryDirectory() # μž„μ‹œ 디렉토리λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
    temp_filepath = os.path.join(temp_dir.name, pdf_docs.name) # μž„μ‹œ 파일 경둜λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
    with open(temp_filepath, "wb") as f:  # μž„μ‹œ νŒŒμΌμ„ λ°”μ΄λ„ˆλ¦¬ μ“°κΈ° λͺ¨λ“œλ‘œ μ—½λ‹ˆλ‹€.
        f.write(pdf_docs.getvalue()) # PDF λ¬Έμ„œμ˜ λ‚΄μš©μ„ μž„μ‹œ νŒŒμΌμ— μ”λ‹ˆλ‹€.
    pdf_loader = PyPDFLoader(temp_filepath) # PyPDFLoaderλ₯Ό μ‚¬μš©ν•΄ PDFλ₯Ό λ‘œλ“œν•©λ‹ˆλ‹€.
    pdf_doc = pdf_loader.load() # ν…μŠ€νŠΈλ₯Ό μΆ”μΆœν•©λ‹ˆλ‹€.
    return pdf_doc # μΆ”μΆœν•œ ν…μŠ€νŠΈλ₯Ό λ°˜ν™˜ν•©λ‹ˆλ‹€.

# 과제
# μ•„λž˜ ν…μŠ€νŠΈ μΆ”μΆœ ν•¨μˆ˜λ₯Ό μž‘μ„±
def get_text_file(docs):
    temp_dir = tempfile.TemporaryDirectory()  # μž„μ‹œ 디렉토리λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
    temp_filepath = os.path.join(temp_dir.name, docs.name)  # μž„μ‹œ 파일 경둜λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
    with open(temp_filepath, "wb") as f:  # μž„μ‹œ νŒŒμΌμ„ λ°”μ΄λ„ˆλ¦¬ μ“°κΈ° λͺ¨λ“œλ‘œ μ—½λ‹ˆλ‹€.
        f.write(docs.getvalue())  # text λ¬Έμ„œμ˜ λ‚΄μš©μ„ μž„μ‹œ νŒŒμΌμ— μ”λ‹ˆλ‹€.
    text_loader = TextLoader(temp_filepath)  # TextLoaderλ₯Ό μ‚¬μš©ν•΄ textλ₯Ό λ‘œλ“œν•©λ‹ˆλ‹€.
    text_doc = text_loader.load()  # ν…μŠ€νŠΈλ₯Ό μΆ”μΆœν•©λ‹ˆλ‹€.
    return text_doc  # μΆ”μΆœν•œ ν…μŠ€νŠΈλ₯Ό λ°˜ν™˜ν•©λ‹ˆλ‹€.

def get_csv_file(docs):
    temp_dir = tempfile.TemporaryDirectory()  # μž„μ‹œ 디렉토리λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
    temp_filepath = os.path.join(temp_dir.name, docs.name)  # μž„μ‹œ 파일 경둜λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
    with open(temp_filepath, "wb") as f:  # μž„μ‹œ νŒŒμΌμ„ ν…μŠ€νŠΈ μ“°κΈ° λͺ¨λ“œλ‘œ μ—½λ‹ˆλ‹€.
        f.write(docs.getvalue())  # csv λ¬Έμ„œμ˜ λ‚΄μš©μ„ μž„μ‹œ νŒŒμΌμ— μ”λ‹ˆλ‹€.
    csv_loader = CSVLoader(temp_filepath)  # CSVLoaderλ₯Ό μ‚¬μš©ν•΄ csv을 λ‘œλ“œν•©λ‹ˆλ‹€.
    csv_doc = csv_loader.load()  # ν…μŠ€νŠΈλ₯Ό μΆ”μΆœν•©λ‹ˆλ‹€.
    return csv_doc  # μΆ”μΆœν•œ ν…μŠ€νŠΈλ₯Ό λ°˜ν™˜ν•©λ‹ˆλ‹€.

def get_json_file(docs):
    temp_dir = tempfile.TemporaryDirectory()
    temp_filepath = os.path.join(temp_dir.name, docs.name)
    with open(temp_filepath, "wb") as f:
        f.write(docs.getvalue())
    json_loader = JSONLoader(temp_filepath, jq_schema='.', text_content=False)
    json_data = json_loader.load()
    # json_spec = JsonSpec(dict_=json_data, max_value_length=4000)
    # json_toolkit = JsonToolkit(spec=json_spec)
    # json_agent_executor = create_json_agent(
    #     llm=OpenAI(temperature=0),
    #     toolkit=json_toolkit,
    #     verbose=True
    # )
    # json_doc = json_agent_executor.execute(text=temp_filepath)
    return json_data

# λ¬Έμ„œλ“€μ„ μ²˜λ¦¬ν•˜μ—¬ ν…μŠ€νŠΈ 청크둜 λ‚˜λˆ„λŠ” ν•¨μˆ˜μž…λ‹ˆλ‹€.
def get_text_chunks(documents):
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,  # 청크의 크기λ₯Ό μ§€μ •ν•©λ‹ˆλ‹€.
        chunk_overlap=200,  # 청크 μ‚¬μ΄μ˜ 쀑볡을 μ§€μ •ν•©λ‹ˆλ‹€.
        length_function=len  # ν…μŠ€νŠΈμ˜ 길이λ₯Ό μΈ‘μ •ν•˜λŠ” ν•¨μˆ˜λ₯Ό μ§€μ •ν•©λ‹ˆλ‹€.
    )

    documents = text_splitter.split_documents(documents)  # λ¬Έμ„œλ“€μ„ 청크둜 λ‚˜λˆ•λ‹ˆλ‹€.
    return documents  # λ‚˜λˆˆ 청크λ₯Ό λ°˜ν™˜ν•©λ‹ˆλ‹€.


# ν…μŠ€νŠΈ μ²­ν¬λ“€λ‘œλΆ€ν„° 벑터 μŠ€ν† μ–΄λ₯Ό μƒμ„±ν•˜λŠ” ν•¨μˆ˜μž…λ‹ˆλ‹€.
def get_vectorstore(text_chunks):
    # μ›ν•˜λŠ” μž„λ² λ”© λͺ¨λΈμ„ λ‘œλ“œν•©λ‹ˆλ‹€.
    embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2',
                                       model_kwargs={'device': 'cpu'})  # μž„λ² λ”© λͺ¨λΈμ„ μ„€μ •ν•©λ‹ˆλ‹€.
    vectorstore = FAISS.from_documents(text_chunks, embeddings)  # FAISS 벑터 μŠ€ν† μ–΄λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
    return vectorstore  # μƒμ„±λœ 벑터 μŠ€ν† μ–΄λ₯Ό λ°˜ν™˜ν•©λ‹ˆλ‹€.


def get_conversation_chain(vectorstore):
    model_name_or_path = 'TheBloke/Llama-2-7B-chat-GGUF'
    model_basename = 'llama-2-7b-chat.Q2_K.gguf'
    model_path = hf_hub_download(repo_id=model_name_or_path, filename=model_basename)

    llm = LlamaCpp(model_path=model_path,
                   n_ctx=4086,
                   input={"temperature": 0.75, "max_length": 2000, "top_p": 1},
                   verbose=True, )
    # λŒ€ν™” 기둝을 μ €μž₯ν•˜κΈ° μœ„ν•œ λ©”λͺ¨λ¦¬λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
    memory = ConversationBufferMemory(
        memory_key='chat_history', return_messages=True)
    # λŒ€ν™” 검색 체인을 μƒμ„±ν•©λ‹ˆλ‹€.
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm=llm,
        retriever=vectorstore.as_retriever(),
        memory=memory
    )
    return conversation_chain # μƒμ„±λœ λŒ€ν™” 체인을 λ°˜ν™˜ν•©λ‹ˆλ‹€.

# μ‚¬μš©μž μž…λ ₯을 μ²˜λ¦¬ν•˜λŠ” ν•¨μˆ˜μž…λ‹ˆλ‹€.
def handle_userinput(user_question):
    print('user_question =>  ', user_question)
    # λŒ€ν™” 체인을 μ‚¬μš©ν•˜μ—¬ μ‚¬μš©μž μ§ˆλ¬Έμ— λŒ€ν•œ 응닡을 μƒμ„±ν•©λ‹ˆλ‹€.
    response = st.session_state.conversation({'question': user_question})
    # λŒ€ν™” 기둝을 μ €μž₯ν•©λ‹ˆλ‹€.
    st.session_state.chat_history = response['chat_history']

    for i, message in enumerate(st.session_state.chat_history):
        if i % 2 == 0:
            st.write(user_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)
        else:
            st.write(bot_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)


def main():
    load_dotenv()
    st.set_page_config(page_title="Chat with multiple Files",
                       page_icon=":books:")
    st.write(css, unsafe_allow_html=True)

    if "conversation" not in st.session_state:
        st.session_state.conversation = None
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = None

    st.header("Chat with multiple Files:")
    user_question = st.text_input("Ask a question about your documents:")
    if user_question:
        handle_userinput(user_question)

    with st.sidebar:
        st.subheader("Your documents")
        docs = st.file_uploader(
            "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
        if st.button("Process"):
            with st.spinner("Processing"):
                # get pdf text
                doc_list = []

                for file in docs:
                    print('file - type : ', file.type)
                    if file.type == 'text/plain':
                        # file is .txt
                        doc_list.extend(get_text_file(file))
                    elif file.type in ['application/octet-stream', 'application/pdf']:
                        # file is .pdf
                        doc_list.extend(get_pdf_text(file))
                    elif file.type == 'text/csv':
                        # file is .csv
                        doc_list.extend(get_csv_file(file))
                    elif file.type == 'application/json':
                        # file is .json
                        doc_list.extend(get_json_file(file))

                # get the text chunks
                text_chunks = get_text_chunks(doc_list)

                # create vector store
                vectorstore = get_vectorstore(text_chunks)

                # create conversation chain
                st.session_state.conversation = get_conversation_chain(
                    vectorstore)


if __name__ == '__main__':
    main()