Spaces:
Running
on
Zero
Running
on
Zero
import io | |
import os | |
import base64 | |
from PIL import Image | |
import cv2 | |
import numpy as np | |
from scripts.generate_prompt import load_wd14_tagger_model, generate_tags, preprocess_image as wd14_preprocess_image | |
from scripts.lineart_util import scribble_xdog, get_sketch, canny | |
from scripts.anime import init_model | |
import torch | |
from diffusers import StableDiffusionPipeline, StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler, AutoencoderKL | |
import gc | |
from peft import PeftModel | |
from dotenv import load_dotenv | |
from scripts.hf_utils import download_file | |
# グローバル変数 | |
use_local = False | |
model = None | |
device = None | |
torch_dtype = None # torch.float16 if device == "cuda" else torch.float32 | |
sotai_gen_pipe = None | |
refine_gen_pipe = None | |
def get_file_path(filename, subfolder): | |
if use_local: | |
return subfolder + "/" + filename | |
else: | |
return download_file(filename, subfolder) | |
def ensure_rgb(image): | |
if image.mode != 'RGB': | |
return image.convert('RGB') | |
return image | |
def initialize(_use_local=False, use_gpu=False, use_dotenv=False): | |
if use_dotenv: | |
load_dotenv() | |
global model, sotai_gen_pipe, refine_gen_pipe, use_local, device, torch_dtype | |
device = "cuda" if use_gpu and torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if device == "cuda" else torch.float32 | |
use_local = _use_local | |
print(f"\nDevice: {device}, Local model: {_use_local}\n") | |
init_model(use_local) | |
model = load_wd14_tagger_model() | |
sotai_gen_pipe = initialize_sotai_model() | |
refine_gen_pipe = initialize_refine_model() | |
def load_lora(pipeline, lora_path, alpha=0.75): | |
pipeline.load_lora_weights(lora_path) | |
pipeline.fuse_lora(lora_scale=alpha) | |
def initialize_sotai_model(): | |
global device, torch_dtype | |
print(f"Device: {device}, torch_dtype: {torch_dtype}") | |
sotai_sd_model_path = get_file_path(os.environ["sotai_sd_model_name"], subfolder=os.environ["sd_models_dir"]) | |
controlnet_path1 = get_file_path(os.environ["controlnet_name1"], subfolder=os.environ["controlnet_dir2"]) | |
# controlnet_path1 = get_file_path(os.environ["controlnet_name2"], subfolder=os.environ["controlnet_dir1"]) | |
controlnet_path2 = get_file_path(os.environ["controlnet_name2"], subfolder=os.environ["controlnet_dir1"]) | |
# Load the Stable Diffusion model | |
sd_pipe = StableDiffusionPipeline.from_single_file( | |
sotai_sd_model_path, | |
torch_dtype=torch_dtype, | |
use_safetensors=True | |
).to(device) | |
# Load the ControlNet model | |
controlnet1 = ControlNetModel.from_single_file( | |
controlnet_path1, | |
torch_dtype=torch_dtype | |
).to(device) | |
# Load the ControlNet model | |
controlnet2 = ControlNetModel.from_single_file( | |
controlnet_path2, | |
torch_dtype=torch_dtype | |
).to(device) | |
# Create the ControlNet pipeline | |
sotai_gen_pipe = StableDiffusionControlNetPipeline( | |
vae=sd_pipe.vae, | |
text_encoder=sd_pipe.text_encoder, | |
tokenizer=sd_pipe.tokenizer, | |
unet=sd_pipe.unet, | |
scheduler=sd_pipe.scheduler, | |
safety_checker=sd_pipe.safety_checker, | |
feature_extractor=sd_pipe.feature_extractor, | |
controlnet=[controlnet1, controlnet2] | |
).to(device) | |
# LoRAの適用 | |
lora_names = [ | |
(os.environ["lora_name1"], 1.0), | |
# (os.environ["lora_name2"], 0.3), | |
] | |
for lora_name, alpha in lora_names: | |
lora_path = get_file_path(lora_name, subfolder=os.environ["lora_dir"]) | |
load_lora(sotai_gen_pipe, lora_path, alpha) | |
# スケジューラーの設定 | |
sotai_gen_pipe.scheduler = UniPCMultistepScheduler.from_config(sotai_gen_pipe.scheduler.config) | |
return sotai_gen_pipe | |
def initialize_refine_model(): | |
global device, torch_dtype | |
refine_sd_model_path = get_file_path(os.environ["refine_sd_model_name"], subfolder=os.environ["sd_models_dir"]) | |
controlnet_path3 = get_file_path(os.environ["controlnet_name3"], subfolder=os.environ["controlnet_dir1"]) | |
controlnet_path4 = get_file_path(os.environ["controlnet_name4"], subfolder=os.environ["controlnet_dir1"]) | |
vae_path = get_file_path(os.environ["vae_name"], subfolder=os.environ["vae_dir"]) | |
# Load the Stable Diffusion model | |
sd_pipe = StableDiffusionPipeline.from_single_file( | |
refine_sd_model_path, | |
torch_dtype=torch_dtype, | |
use_safetensors=True | |
).to(device) | |
# controlnet_path = "models/cn/control_v11p_sd15_canny.pth" | |
controlnet1 = ControlNetModel.from_single_file( | |
controlnet_path3, | |
torch_dtype=torch_dtype | |
).to(device) | |
# Load the ControlNet model | |
controlnet2 = ControlNetModel.from_single_file( | |
controlnet_path4, | |
torch_dtype=torch_dtype | |
).to(device) | |
# Create the ControlNet pipeline | |
refine_gen_pipe = StableDiffusionControlNetPipeline( | |
vae=AutoencoderKL.from_single_file(vae_path, torch_dtype=torch_dtype).to(device), | |
text_encoder=sd_pipe.text_encoder, | |
tokenizer=sd_pipe.tokenizer, | |
unet=sd_pipe.unet, | |
scheduler=sd_pipe.scheduler, | |
safety_checker=sd_pipe.safety_checker, | |
feature_extractor=sd_pipe.feature_extractor, | |
controlnet=[controlnet1, controlnet2], # 複数のControlNetを指定 | |
).to(device) | |
# スケジューラーの設定 | |
refine_gen_pipe.scheduler = UniPCMultistepScheduler.from_config(refine_gen_pipe.scheduler.config) | |
return refine_gen_pipe | |
def get_wd_tags(images: list) -> list: | |
global model | |
if model is None: | |
raise ValueError("Model is not initialized") | |
# initialize() | |
preprocessed_images = [wd14_preprocess_image(img) for img in images] | |
preprocessed_images = np.array(preprocessed_images) | |
return generate_tags(preprocessed_images, os.environ["wd_model_name"], model) | |
def preprocess_image_for_generation(image): | |
if isinstance(image, str): # base64文字列の場合 | |
image = Image.open(io.BytesIO(base64.b64decode(image))) | |
elif isinstance(image, np.ndarray): # numpy配列の場合 | |
image = Image.fromarray(image) | |
elif not isinstance(image, Image.Image): | |
raise ValueError("Unsupported image type") | |
# 画像サイズの計算 | |
input_width, input_height = image.size | |
max_size = 736 | |
output_width = max_size if input_height < input_width else int(input_width / input_height * max_size) | |
output_height = max_size if input_height > input_width else int(input_height / input_width * max_size) | |
image = image.resize((output_width, output_height)) | |
return image, output_width, output_height | |
def binarize_image(image: Image.Image) -> np.ndarray: | |
image = np.array(image.convert('L')) | |
# 色反転 | |
image = 255 - image | |
# ヒストグラム平坦化 | |
clahe = cv2.createCLAHE(clipLimit=1.0, tileGridSize=(8, 8)) | |
image = clahe.apply(image) | |
# ガウシアンブラー適用 | |
image = cv2.GaussianBlur(image, (5, 5), 0) | |
# 適応的二値化 | |
binary_image = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 9, -8) | |
return binary_image | |
def create_rgba_image(binary_image: np.ndarray, color: list) -> Image.Image: | |
rgba_image = np.zeros((binary_image.shape[0], binary_image.shape[1], 4), dtype=np.uint8) | |
rgba_image[:, :, 0] = color[0] | |
rgba_image[:, :, 1] = color[1] | |
rgba_image[:, :, 2] = color[2] | |
rgba_image[:, :, 3] = binary_image | |
return Image.fromarray(rgba_image, 'RGBA') | |
def generate_sotai_image(input_image: Image.Image, output_width: int, output_height: int) -> Image.Image: | |
input_image = ensure_rgb(input_image) | |
global sotai_gen_pipe | |
if sotai_gen_pipe is None: | |
raise ValueError("Model is not initialized") | |
# initialize() | |
prompt = "anime pose, girl, (white background:1.5), (monochrome:1.5), full body, sketch, eyes, breasts, (slim legs, skinny legs:1.2)" | |
try: | |
# 入力画像のリサイズ | |
if input_image.size[0] > input_image.size[1]: | |
input_image = input_image.resize((512, int(512 * input_image.size[1] / input_image.size[0]))) | |
else: | |
input_image = input_image.resize((int(512 * input_image.size[0] / input_image.size[1]), 512)) | |
# EasyNegativeV2の内容 | |
easy_negative_v2 = "(worst quality, low quality, normal quality:1.4), lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry, artist name, (bad_prompt_version2:0.8)" | |
output = sotai_gen_pipe( | |
prompt, | |
image=[input_image, input_image], | |
negative_prompt=f"(wings:1.6), (clothes, garment, lighting, gray, missing limb, extra line, extra limb, extra arm, extra legs, hair, bangs, fringe, forelock, front hair, fill:1.4), (ink pool:1.6)", | |
# negative_prompt=f"{easy_negative_v2}, (wings:1.6), (clothes, garment, lighting, gray, missing limb, extra line, extra limb, extra arm, extra legs, hair, bangs, fringe, forelock, front hair, fill:1.4), (ink pool:1.6)", | |
num_inference_steps=20, | |
guidance_scale=8, | |
width=output_width, | |
height=output_height, | |
denoising_strength=0.13, | |
num_images_per_prompt=1, # Equivalent to batch_size | |
guess_mode=[True, True], # Equivalent to pixel_perfect | |
controlnet_conditioning_scale=[1.4, 1.3], # 各ControlNetの重み | |
guidance_start=[0.0, 0.0], | |
guidance_end=[1.0, 1.0], | |
) | |
generated_image = output.images[0] | |
return generated_image | |
finally: | |
# メモリ解放 | |
if device == "cuda": | |
torch.cuda.empty_cache() | |
gc.collect() | |
def generate_refined_image(prompt: str, original_image: Image.Image, output_width: int, output_height: int, weight1: float, weight2: float) -> Image.Image: | |
original_image = ensure_rgb(original_image) | |
global refine_gen_pipe | |
if refine_gen_pipe is None: | |
raise ValueError("Model is not initialized") | |
# initialize() | |
try: | |
original_image_np = np.array(original_image) | |
# scribble_xdog | |
scribble_image, _ = scribble_xdog(original_image_np, 2048, 20) | |
original_image = original_image.resize((output_width, output_height)) | |
output = refine_gen_pipe( | |
prompt, | |
image=[scribble_image, original_image], # 2つのControlNetに対応する入力画像 | |
negative_prompt="extra limb, monochrome, black and white", | |
num_inference_steps=20, | |
width=output_width, | |
height=output_height, | |
controlnet_conditioning_scale=[weight1, weight2], # 各ControlNetの重み | |
control_guidance_start=[0.0, 0.0], | |
control_guidance_end=[1.0, 1.0], | |
guess_mode=[False, False], # pixel_perfect | |
) | |
generated_image = output.images[0] | |
return generated_image | |
finally: | |
# メモリ解放 | |
if device == "cuda": | |
torch.cuda.empty_cache() | |
gc.collect() | |
def process_image(input_image, mode: str, weight1: float = 0.4, weight2: float = 0.3): | |
input_image = ensure_rgb(input_image) | |
# サイズを取得 | |
input_width, input_height = input_image.size | |
max_size = 736 | |
output_width = max_size if input_height < input_width else int(input_width / input_height * max_size) | |
output_height = max_size if input_height > input_width else int(input_height / input_width * max_size) | |
if mode == "refine": | |
# WD-14 taggerを使用してプロンプトを生成 | |
image_np = np.array(ensure_rgb(input_image)) | |
prompt = get_wd_tags([image_np])[0] | |
prompt = f"{prompt}" | |
refined_image = generate_refined_image(prompt, input_image, output_width, output_height, weight1, weight2) | |
refined_image = refined_image.convert('RGB') | |
# スケッチ画像を生成 | |
refined_image_np = np.array(refined_image) | |
sketch_image = get_sketch(refined_image_np, "both", 2048, 10) | |
sketch_image = sketch_image.resize((output_width, output_height)) # 画像サイズを合わせる | |
# スケッチ画像の二値化 | |
sketch_binary = binarize_image(sketch_image) | |
# RGBAに変換(透明なベース画像を作成)して、青い線を設定 | |
sketch_image = create_rgba_image(sketch_binary, [0, 0, 255]) | |
# 素体画像の生成 | |
sotai_image = generate_sotai_image(refined_image, output_width, output_height) | |
elif mode == "original": | |
sotai_image = generate_sotai_image(input_image, output_width, output_height) | |
# スケッチ画像の生成 | |
input_image_np = np.array(input_image) | |
sketch_image = get_sketch(input_image_np, "both", 2048, 16) | |
elif mode == "sketch": | |
# スケッチ画像の生成 | |
input_image_np = np.array(input_image) | |
sketch_image = get_sketch(input_image_np, "both", 2048, 16) | |
# 素体画像の生成 | |
sotai_image = generate_sotai_image(sketch_image, output_width, output_height) | |
else: | |
raise ValueError("Invalid mode") | |
# 素体画像の二値化 | |
sotai_binary = binarize_image(sotai_image) | |
# RGBAに変換(透明なベース画像を作成)して、赤い線を設定 | |
sotai_image = create_rgba_image(sotai_binary, [255, 0, 0]) | |
return sotai_image, sketch_image | |
def image_to_base64(img_array): | |
buffered = io.BytesIO() | |
img_array.save(buffered, format="PNG") | |
return base64.b64encode(buffered.getvalue()).decode() | |
def process_image_as_base64(input_image, mode: str, weight1: float = 0.4, weight2: float = 0.3): | |
sotai_image, sketch_image = process_image(input_image, mode, weight1, weight2) | |
return image_to_base64(sotai_image), image_to_base64(sketch_image) | |