Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import io | |
import os | |
from PIL import Image | |
import base64 | |
from scripts.process_utils import initialize, process_image_as_base64, image_to_base64 | |
from scripts.anime import init_model | |
from scripts.generate_prompt import load_wd14_tagger_model | |
from datetime import datetime | |
from pytz import timezone | |
from scripts.survey import handle_form_submission, handle_visit_choice, handle_proceed, localize, script, generate_image, send_feedback | |
def initialize_models(): | |
# 初期化 | |
initialize(_use_local=False, use_gpu=True, use_dotenv=True) | |
init_model(use_local=False) | |
load_wd14_tagger_model() | |
def process_image(input_image, mode, weight1=None, weight2=None): | |
tokyo_time = datetime.now(timezone('Asia/Tokyo')).strftime("%Y-%m-%d %H:%M:%S") # 日本時間のタイムスタンプ | |
print(f"[{tokyo_time}] Processing image with mode={mode}, weight1={weight1}, weight2={weight2}") | |
# feedback用のファイル名 | |
tokyo_time = datetime.now(timezone('Asia/Tokyo')).strftime("%Y%m%d_%H%M%S") | |
filename = f"{tokyo_time}_mode={mode}_weight1={weight1}_weight2={weight2}.png" | |
# 既存の画像処理ロジック | |
if mode == "original": | |
sotai_image, sketch_image = process_image_as_base64(input_image, mode, None, None) | |
elif mode == "refine": | |
sotai_image, sketch_image = process_image_as_base64(input_image, mode, weight1, weight2) | |
return sotai_image, sketch_image, None, filename | |
def mix_images(sotai_image_data, sketch_image_data, opacity1, opacity2): | |
sotai_image = Image.open(io.BytesIO(base64.b64decode(sotai_image_data))).convert('RGBA') | |
sketch_image = Image.open(io.BytesIO(base64.b64decode(sketch_image_data))).convert('RGBA') | |
if sotai_image.size != sketch_image.size: | |
sketch_image = sketch_image.resize(sotai_image.size, Image.Resampling.LANCZOS) | |
mixed_image = Image.new('RGBA', sotai_image.size, (255, 255, 255, 255)) | |
sotai_alpha = sotai_image.getchannel('A').point(lambda x: int(x * opacity1)) | |
sketch_alpha = sketch_image.getchannel('A').point(lambda x: int(x * opacity2)) | |
mixed_image.paste(sketch_image, (0, 0), mask=sketch_alpha) | |
mixed_image.paste(sotai_image, (0, 0), mask=sotai_alpha) | |
return mixed_image | |
def send_mixed_feedback(sotai_image_data, sketch_image_data, filename): | |
mixed_image = mix_images(sotai_image_data, sketch_image_data, 0.5, 0.5) | |
return send_feedback(mixed_image, filename) | |
with gr.Blocks() as demo: | |
form_visible_flag = gr.Textbox(value="false", elem_id="form_flag", visible=False) | |
# title | |
gr.HTML("<h1>Image2Body demo</h1>") | |
# description with translations and additional notes | |
gr.HTML(""" | |
<p>Upload an image and select processing options to generate body and sketch images.</p> | |
<p>まだstandingタグのついた女性キャラクターの1000枚の画像しか学習していないため、他のポーズは上手くできないことをご了承ください。</p> | |
<p>さらなる情報は<a href="https://x.com/Yeq6X" target="_blank">@Yeq6X</a>までお問い合わせください。</p> | |
<p>Note: Currently, the model has been trained on only 1000 images of female characters with the 'standing' tag, so other poses may not be processed accurately.</p> | |
<p>For more information, please contact <a href="https://x.com/Yeq6X" target="_blank">@Yeq6X</a>.</p> | |
<p>注意:目前模型仅使用带有“standing”标签的1000张女性角色图像进行训练,因此其他姿势可能无法准确处理。</p> | |
<p>如需更多信息,请联系<a href="https://x.com/Yeq6X" target="_blank">@Yeq6X</a>。</p> | |
""") | |
# 訪問回数の選択 | |
with gr.Column(visible=False) as visit_section: | |
# 言語選択セクション | |
with gr.Row(): | |
language_choice = gr.Radio( | |
choices=["en", "ja", "zh"], | |
label="Select Language / 言語を選択 / 选择语言", | |
value="en" | |
) | |
localized = localize("en") | |
welcome_message = gr.HTML(localized["welcome_message"]) | |
visit_choice = gr.Radio(choices=localized["visit_choices"], label="") | |
# 初回訪問のアンケートセクション | |
with gr.Column(visible=False) as survey_section: | |
# フォームセクション | |
form_section = gr.HTML(localize("en")["form_html"]) | |
# 2回目以降の進むボタンセクション | |
with gr.Column(visible=False) as proceed_section: | |
# gr.HTML("<h2>再訪ありがとうございます!</h2>") | |
# proceed_button = gr.Button("進む") | |
proceed_message = gr.HTML(localize("en")["returning_message"]) | |
proceed_button = gr.Button(localize("en")["proceed_button"], variant="primary") | |
# 言語選択変更時の更新 | |
def update_language(language): | |
localized = localize(language) | |
return ( | |
gr.update(value=localized["welcome_message"]), | |
gr.update(choices=localized["visit_choices"]), | |
gr.update(value=localized["returning_message"]), | |
gr.update(value=localized["proceed_button"]), | |
gr.update(value=localized["form_html"]) | |
) | |
language_choice.change( | |
update_language, | |
inputs=[language_choice], | |
outputs=[welcome_message, visit_choice, proceed_message, proceed_button, form_section] | |
) | |
# フォーム送信時の画面切り替え | |
def handle_submit(): | |
return gr.update(visible=False), gr.update(visible=True) | |
submit_flag = gr.Textbox(visible=False, value="false") | |
submit_flag.change( | |
handle_submit, | |
inputs=[], | |
outputs=[form_section] | |
) | |
# メイン画面セクション | |
with gr.Column(visible=True) as main_section: | |
# interface | |
submit = None | |
with gr.Row(): | |
with gr.Column() as input_col: | |
input_image = gr.Image(type="pil", label="Input Image", height=512) | |
with gr.Tab("original"): | |
original_mode = gr.Text("original", label="Mode", visible=False) | |
original_submit = gr.Button("Submit", variant="primary") | |
with gr.Tab("refine"): | |
refine_input = [ | |
gr.Text("refine", label="Mode", visible=False), | |
gr.Slider(0, 2, value=0.6, step=0.05, label="Weight 1 (Sketch)"), | |
gr.Slider(0, 1, value=0.05, step=0.025, label="Weight 2 (Body)") | |
] | |
refine_submit = gr.Button("Submit", variant="primary") | |
gr.Examples( | |
examples=[f"images/sample{i}.png" for i in [1, 2, 4, 5, 6, 7, 10, 16, 18, 19]], | |
inputs=[input_image] | |
) | |
with gr.Column() as output_col: | |
sotai_image_data = gr.Text(label="Sotai Image data", visible=False) | |
sketch_image_data = gr.Text(label="Sketch Image data", visible=False) | |
mixed_image = gr.Image(label="Output Image", elem_id="output_image") | |
opacity_slider1 = gr.Slider(0, 1, value=0.5, step=0.05, label="Opacity (Sotai)") | |
opacity_slider2 = gr.Slider(0, 1, value=0.5, step=0.05, label="Opacity (Sketch)") | |
send_filename = gr.Textbox(label="Feedback", visible=False) | |
gr.HTML("<h3>Send Feedback Image/画像を送信</h3>") | |
gr.HTML("<p>Images are used only for developer review and will not be shared.</p>") | |
gr.HTML("<p>画像は開発者が確認するためだけに使用され、公開されません。</p>") | |
send_feedback_button = gr.Button("Contribute as Feedback to Developer/開発者へのフィードバックとして協力する") | |
feed_back_result = gr.Textbox(label="Feedback Result") | |
original_submit.click( | |
process_image, | |
inputs=[input_image, original_mode], | |
outputs=[sotai_image_data, sketch_image_data, mixed_image, send_filename] | |
) | |
refine_submit.click( | |
process_image, | |
inputs=[input_image, refine_input[0], refine_input[1], refine_input[2]], | |
outputs=[sotai_image_data, sketch_image_data, mixed_image, send_filename] | |
) | |
sotai_image_data.change( | |
mix_images, | |
inputs=[sotai_image_data, sketch_image_data, opacity_slider1, opacity_slider2], | |
outputs=mixed_image | |
) | |
opacity_slider1.change( | |
mix_images, | |
inputs=[sotai_image_data, sketch_image_data, opacity_slider1, opacity_slider2], | |
outputs=mixed_image | |
) | |
opacity_slider2.change( | |
mix_images, | |
inputs=[sotai_image_data, sketch_image_data, opacity_slider1, opacity_slider2], | |
outputs=mixed_image | |
) | |
# フラグ変更時に画面切り替え | |
form_visible_flag.change( | |
handle_form_submission, | |
inputs=[form_visible_flag], | |
outputs=[survey_section, main_section] | |
) | |
# 選択肢に応じてセクションを切り替え | |
visit_choice.change( | |
handle_visit_choice, | |
inputs=[visit_choice, language_choice], | |
outputs=[visit_section, survey_section, proceed_section] | |
) | |
# 進むボタン押下時の画面遷移 | |
proceed_button.click( | |
handle_proceed, | |
inputs=[], | |
outputs=[proceed_section, main_section] | |
) | |
send_feedback_button.click( | |
send_mixed_feedback, | |
inputs=[sotai_image_data, sketch_image_data, send_filename], | |
outputs=[feed_back_result], | |
) | |
# JavaScriptの読み込み | |
demo.load(js=script) | |
initialize_models() | |
demo.launch() | |