Spaces:
Running
on
Zero
Running
on
Zero
use_local編集
Browse files- app.py +4 -3
- scripts/anime.py +14 -7
- scripts/model.py +5 -2
- scripts/process_utils.py +8 -5
app.py
CHANGED
@@ -79,7 +79,7 @@ def worker():
|
|
79 |
if task.task_id in active_tasks:
|
80 |
future = executor.submit(process_task, task)
|
81 |
task_futures[task.task_id] = future
|
82 |
-
update_queue_status(f'Task
|
83 |
except Exception as e:
|
84 |
print(f"Worker error: {str(e)}")
|
85 |
finally:
|
@@ -187,7 +187,8 @@ if __name__ == '__main__':
|
|
187 |
parser = argparse.ArgumentParser(description='Server options.')
|
188 |
parser.add_argument('--use_local', action='store_true', help='Use local model')
|
189 |
parser.add_argument('--use_gpu', action='store_true', help='Set to True to use GPU but if not available, it will use CPU')
|
|
|
190 |
args = parser.parse_args()
|
191 |
|
192 |
-
initialize(args.use_local, args.use_gpu)
|
193 |
-
socketio.run(app, debug=True, host='0.0.0.0', port=
|
|
|
79 |
if task.task_id in active_tasks:
|
80 |
future = executor.submit(process_task, task)
|
81 |
task_futures[task.task_id] = future
|
82 |
+
update_queue_status(f'Task processing: {task.task_id}')
|
83 |
except Exception as e:
|
84 |
print(f"Worker error: {str(e)}")
|
85 |
finally:
|
|
|
187 |
parser = argparse.ArgumentParser(description='Server options.')
|
188 |
parser.add_argument('--use_local', action='store_true', help='Use local model')
|
189 |
parser.add_argument('--use_gpu', action='store_true', help='Set to True to use GPU but if not available, it will use CPU')
|
190 |
+
parser.add_argument('--use_dotenv', action='store_true', help='Use .env file for environment variables')
|
191 |
args = parser.parse_args()
|
192 |
|
193 |
+
initialize(args.use_local, args.use_gpu, args.use_dotenv)
|
194 |
+
socketio.run(app, debug=True, host='0.0.0.0', port=5000)
|
scripts/anime.py
CHANGED
@@ -6,15 +6,22 @@ Example:
|
|
6 |
|
7 |
import os
|
8 |
import torch
|
9 |
-
from scripts.data import get_image_list, get_transform
|
10 |
from scripts.model import create_model
|
11 |
-
from scripts.data import tensor_to_img, save_image
|
12 |
import argparse
|
13 |
from tqdm.auto import tqdm
|
14 |
from kornia.enhance import equalize_clahe
|
15 |
from PIL import Image
|
16 |
import numpy as np
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# numpy配列の画像を受け取り、線画を生成してnumpy配列で返す
|
20 |
def generate_sketch(image, clahe_clip=-1, load_size=512):
|
@@ -28,10 +35,10 @@ def generate_sketch(image, clahe_clip=-1, load_size=512):
|
|
28 |
np.ndarray: output image
|
29 |
"""
|
30 |
# create model
|
31 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
32 |
-
model_opt = "default"
|
33 |
-
model = create_model(model_opt).to(device)
|
34 |
-
model.eval()
|
35 |
|
36 |
aus_resize = None
|
37 |
if load_size > 0:
|
@@ -85,7 +92,7 @@ if __name__ == '__main__':
|
|
85 |
# create model
|
86 |
gpu_list = ','.join(str(x) for x in opt.gpu_ids)
|
87 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
88 |
-
model = create_model(opt.model).to(device) # create a model given opt.model and other options
|
89 |
model.eval()
|
90 |
|
91 |
for test_path in tqdm(get_image_list(opt.dataroot)):
|
|
|
6 |
|
7 |
import os
|
8 |
import torch
|
9 |
+
from scripts.data import get_image_list, get_transform, tensor_to_img, save_image
|
10 |
from scripts.model import create_model
|
|
|
11 |
import argparse
|
12 |
from tqdm.auto import tqdm
|
13 |
from kornia.enhance import equalize_clahe
|
14 |
from PIL import Image
|
15 |
import numpy as np
|
16 |
|
17 |
+
model = None
|
18 |
+
|
19 |
+
def init_model(use_local=False):
|
20 |
+
global model
|
21 |
+
model_opt = "default"
|
22 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
23 |
+
model = create_model(model_opt, use_local).to(device)
|
24 |
+
model.eval()
|
25 |
|
26 |
# numpy配列の画像を受け取り、線画を生成してnumpy配列で返す
|
27 |
def generate_sketch(image, clahe_clip=-1, load_size=512):
|
|
|
35 |
np.ndarray: output image
|
36 |
"""
|
37 |
# create model
|
38 |
+
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
39 |
+
# model_opt = "default"
|
40 |
+
# model = create_model(model_opt).to(device)
|
41 |
+
# model.eval()
|
42 |
|
43 |
aus_resize = None
|
44 |
if load_size > 0:
|
|
|
92 |
# create model
|
93 |
gpu_list = ','.join(str(x) for x in opt.gpu_ids)
|
94 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
95 |
+
model = create_model(opt.model, use_local=True).to(device) # create a model given opt.model and other options
|
96 |
model.eval()
|
97 |
|
98 |
for test_path in tqdm(get_image_list(opt.dataroot)):
|
scripts/model.py
CHANGED
@@ -144,7 +144,7 @@ class Upsample(nn.Module):
|
|
144 |
return x
|
145 |
|
146 |
|
147 |
-
def create_model(model):
|
148 |
"""Create a model for anime2sketch
|
149 |
hardcoding the options for simplicity
|
150 |
"""
|
@@ -156,7 +156,10 @@ def create_model(model):
|
|
156 |
cwd = os.getcwd() # 現在のディレクトリを保存
|
157 |
os.chdir(os.path.dirname(__file__)) # このファイルのディレクトリに移動
|
158 |
if model == 'default':
|
159 |
-
model_path =
|
|
|
|
|
|
|
160 |
ckpt = torch.load(model_path)
|
161 |
for key in list(ckpt.keys()):
|
162 |
if 'module.' in key:
|
|
|
144 |
return x
|
145 |
|
146 |
|
147 |
+
def create_model(model, use_local):
|
148 |
"""Create a model for anime2sketch
|
149 |
hardcoding the options for simplicity
|
150 |
"""
|
|
|
156 |
cwd = os.getcwd() # 現在のディレクトリを保存
|
157 |
os.chdir(os.path.dirname(__file__)) # このファイルのディレクトリに移動
|
158 |
if model == 'default':
|
159 |
+
model_path = (lambda filename, subfolder: os.path.join(subfolder, filename) if use_local else download_file(filename, subfolder)) \
|
160 |
+
("netG.pth", "models/Anime2Sketch")
|
161 |
+
# model_path = ((filename, subfolder) => if (use_local) os.path.join(subfolder, filename) else download_file(filename, subfolder))("netG.pth", "models/Anime2Sketch") // JavaScript
|
162 |
+
|
163 |
ckpt = torch.load(model_path)
|
164 |
for key in list(ckpt.keys()):
|
165 |
if 'module.' in key:
|
scripts/process_utils.py
CHANGED
@@ -6,6 +6,7 @@ import cv2
|
|
6 |
import numpy as np
|
7 |
from scripts.generate_prompt import load_wd14_tagger_model, generate_tags, preprocess_image as wd14_preprocess_image
|
8 |
from scripts.lineart_util import scribble_xdog, get_sketch, canny
|
|
|
9 |
import torch
|
10 |
from diffusers import StableDiffusionPipeline, StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler, AutoencoderKL
|
11 |
import gc
|
@@ -32,8 +33,9 @@ def ensure_rgb(image):
|
|
32 |
return image.convert('RGB')
|
33 |
return image
|
34 |
|
35 |
-
def initialize(_use_local, use_gpu):
|
36 |
-
|
|
|
37 |
global model, sotai_gen_pipe, refine_gen_pipe, use_local, device, torch_dtype
|
38 |
device = "cuda" if use_gpu and torch.cuda.is_available() else "cpu"
|
39 |
torch_dtype = torch.float16 if device == "cuda" else torch.float32
|
@@ -41,6 +43,7 @@ def initialize(_use_local, use_gpu):
|
|
41 |
print('')
|
42 |
print(f"Device: {device}, Local model: {_use_local}")
|
43 |
print('')
|
|
|
44 |
model = load_wd14_tagger_model()
|
45 |
sotai_gen_pipe = initialize_sotai_model()
|
46 |
refine_gen_pipe = initialize_refine_model()
|
@@ -53,8 +56,8 @@ def initialize_sotai_model():
|
|
53 |
global device, torch_dtype
|
54 |
|
55 |
sotai_sd_model_path = get_file_path(os.environ["sotai_sd_model_name"], subfolder=os.environ["sd_models_dir"])
|
56 |
-
|
57 |
-
controlnet_path1 = get_file_path(os.environ["controlnet_name2"], subfolder=os.environ["controlnet_dir1"])
|
58 |
controlnet_path2 = get_file_path(os.environ["controlnet_name2"], subfolder=os.environ["controlnet_dir1"])
|
59 |
print(use_local, controlnet_path1)
|
60 |
|
@@ -229,7 +232,7 @@ def generate_sotai_image(input_image: Image.Image, output_width: int, output_hei
|
|
229 |
denoising_strength=0.13,
|
230 |
num_images_per_prompt=1, # Equivalent to batch_size
|
231 |
guess_mode=[True, True], # Equivalent to pixel_perfect
|
232 |
-
controlnet_conditioning_scale=[1.
|
233 |
guidance_start=[0.0, 0.0],
|
234 |
guidance_end=[1.0, 1.0],
|
235 |
)
|
|
|
6 |
import numpy as np
|
7 |
from scripts.generate_prompt import load_wd14_tagger_model, generate_tags, preprocess_image as wd14_preprocess_image
|
8 |
from scripts.lineart_util import scribble_xdog, get_sketch, canny
|
9 |
+
from scripts.anime import init_model
|
10 |
import torch
|
11 |
from diffusers import StableDiffusionPipeline, StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler, AutoencoderKL
|
12 |
import gc
|
|
|
33 |
return image.convert('RGB')
|
34 |
return image
|
35 |
|
36 |
+
def initialize(_use_local=False, use_gpu=False, use_dotenv=False):
|
37 |
+
if use_dotenv:
|
38 |
+
load_dotenv()
|
39 |
global model, sotai_gen_pipe, refine_gen_pipe, use_local, device, torch_dtype
|
40 |
device = "cuda" if use_gpu and torch.cuda.is_available() else "cpu"
|
41 |
torch_dtype = torch.float16 if device == "cuda" else torch.float32
|
|
|
43 |
print('')
|
44 |
print(f"Device: {device}, Local model: {_use_local}")
|
45 |
print('')
|
46 |
+
init_model(use_local)
|
47 |
model = load_wd14_tagger_model()
|
48 |
sotai_gen_pipe = initialize_sotai_model()
|
49 |
refine_gen_pipe = initialize_refine_model()
|
|
|
56 |
global device, torch_dtype
|
57 |
|
58 |
sotai_sd_model_path = get_file_path(os.environ["sotai_sd_model_name"], subfolder=os.environ["sd_models_dir"])
|
59 |
+
controlnet_path1 = get_file_path(os.environ["controlnet_name1"], subfolder=os.environ["controlnet_dir2"])
|
60 |
+
# controlnet_path1 = get_file_path(os.environ["controlnet_name2"], subfolder=os.environ["controlnet_dir1"])
|
61 |
controlnet_path2 = get_file_path(os.environ["controlnet_name2"], subfolder=os.environ["controlnet_dir1"])
|
62 |
print(use_local, controlnet_path1)
|
63 |
|
|
|
232 |
denoising_strength=0.13,
|
233 |
num_images_per_prompt=1, # Equivalent to batch_size
|
234 |
guess_mode=[True, True], # Equivalent to pixel_perfect
|
235 |
+
controlnet_conditioning_scale=[1.4, 1.3], # 各ControlNetの重み
|
236 |
guidance_start=[0.0, 0.0],
|
237 |
guidance_end=[1.0, 1.0],
|
238 |
)
|