yeq6x commited on
Commit
2d25f01
·
1 Parent(s): 0c2c9ce

load_model

Browse files
Files changed (1) hide show
  1. app.py +103 -102
app.py CHANGED
@@ -13,15 +13,15 @@ import spaces
13
  pipe = None
14
 
15
  def load_model():
16
- global pipe
17
- pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
18
- "yeq6x/animagine_position_map",
19
- controlnet=ControlNetModel.from_pretrained("yeq6x/Image2PositionColor_v3"),
20
- ).to("cuda")
21
- pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
22
 
23
  def convert_pil_to_opencv(pil_image):
24
- return np.array(pil_image)
25
 
26
  def inv_func(y,
27
  c = -712.380100,
@@ -30,103 +30,103 @@ def inv_func(y,
30
  return (np.exp((y - c) / a) - np.exp(-c/a)) / 964.8468371292845
31
 
32
  def create_point_cloud(img1, img2):
33
- if img1.shape != img2.shape:
34
- raise ValueError("Both images must have the same dimensions.")
35
-
36
- h, w, _ = img1.shape
37
- points = []
38
- colors = []
39
- for y in range(h):
40
- for x in range(w):
41
- # ピクセル位置 (x, y) のRGBをXYZとして取得
42
- r, g, b = img1[y, x]
43
- r = inv_func(r) * 0.9
44
- g = inv_func(g) / 1.7 * 0.6
45
- b = inv_func(b)
46
- r *= 150
47
- g *= 150
48
- b *= 150
49
- points.append([g, b, r]) # X, Y, Z
50
- # 対応するピクセル位置の画像2の色を取得
51
- colors.append(img2[y, x] / 255.0) # 色は0〜1にスケール
52
-
53
- return np.array(points), np.array(colors)
54
 
55
  def point_cloud_to_glb(points, colors):
56
- # Open3Dでポイントクラウドを作成
57
- pc = o3d.geometry.PointCloud()
58
- pc.points = o3d.utility.Vector3dVector(points)
59
- pc.colors = o3d.utility.Vector3dVector(colors)
60
-
61
- # 一時的にPLY形式で保存
62
- temp_ply_file = "temp_output.ply"
63
- o3d.io.write_point_cloud(temp_ply_file, pc)
64
-
65
- # PLYをGLBに変換
66
- mesh = trimesh.load(temp_ply_file)
67
- glb_file = "output.glb"
68
- mesh.export(glb_file)
69
-
70
- return glb_file
71
 
72
  def visualize_3d(image1, image2):
73
- print("Processing...")
74
- # PIL画像をOpenCV形式に変換
75
- img1 = convert_pil_to_opencv(image1)
76
- img2 = convert_pil_to_opencv(image2)
77
 
78
- # ポイントクラウド生成
79
- points, colors = create_point_cloud(img1, img2)
80
 
81
- # GLB形式に変換
82
- glb_file = point_cloud_to_glb(points, colors)
83
 
84
- return glb_file
85
 
86
  def scale_image(original_image):
87
- aspect_ratio = original_image.width / original_image.height
88
 
89
- if original_image.width > original_image.height:
90
- new_width = 1024
91
- new_height = round(new_width / aspect_ratio)
92
- else:
93
- new_height = 1024
94
- new_width = round(new_height * aspect_ratio)
95
 
96
- resized_original = original_image.resize((new_width, new_height), Image.LANCZOS)
97
 
98
- return resized_original
99
 
100
  def get_edge_mode_color(img, edge_width=10):
101
- # 外周の10ピクセル領域を取得
102
- left = img.crop((0, 0, edge_width, img.height)) # 左端
103
- right = img.crop((img.width - edge_width, 0, img.width, img.height)) # 右端
104
- top = img.crop((0, 0, img.width, edge_width)) # 上端
105
- bottom = img.crop((0, img.height - edge_width, img.width, img.height)) # 下端
106
 
107
- # 各領域のピクセルデータを取得して結合
108
- colors = list(left.getdata()) + list(right.getdata()) + list(top.getdata()) + list(bottom.getdata())
109
 
110
- # 最頻値(mode)を計算
111
- mode_color = Counter(colors).most_common(1)[0][0] # 最も頻繁に出現する色を取得
112
 
113
- return mode_color
114
 
115
  def paste_image(resized_img):
116
- # 外周10pxの最頻値を背景色に設定
117
- mode_color = get_edge_mode_color(resized_img, edge_width=10)
118
- mode_background = Image.new("RGBA", (1024, 1024), mode_color)
119
- mode_background = mode_background.convert('RGB')
120
 
121
- x = (1024 - resized_img.width) // 2
122
- y = (1024 - resized_img.height) // 2
123
- mode_background.paste(resized_img, (x, y))
124
 
125
- return mode_background
126
 
127
  def outpaint_image(image):
128
  if type(image) == type(None):
129
- return None
130
  resized_img = scale_image(image)
131
  image = paste_image(resized_img)
132
 
@@ -134,29 +134,30 @@ def outpaint_image(image):
134
 
135
  @spaces.GPU
136
  def predict_image(cond_image, prompt, negative_prompt):
137
- generator = torch.Generator()
138
- generator.manual_seed(random.randint(0, 2147483647))
139
-
140
- prompt = 'position map, 1girl, white background'
141
- negative_prompt = "lowres, bad anatomy, bad hands, bad feet, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry"
142
-
143
- image = pipe(
144
- prompt,
145
- prompt,
146
- cond_image,
147
- negative_prompt=negative_prompt,
148
- width=1024,
149
- height=1024,
150
- guidance_scale=8,
151
- num_inference_steps=20,
152
- generator=generator,
153
- guess_mode = True,
154
- controlnet_conditioning_scale = 0.6,
155
- ).images[0]
156
-
157
- return image
 
158
 
159
- load_model()
160
 
161
  # Gradioアプリケーション
162
  with gr.Blocks() as demo:
 
13
  pipe = None
14
 
15
  def load_model():
16
+ global pipe
17
+ pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
18
+ "yeq6x/animagine_position_map",
19
+ controlnet=ControlNetModel.from_pretrained("yeq6x/Image2PositionColor_v3"),
20
+ ).to("cuda")
21
+ pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
22
 
23
  def convert_pil_to_opencv(pil_image):
24
+ return np.array(pil_image)
25
 
26
  def inv_func(y,
27
  c = -712.380100,
 
30
  return (np.exp((y - c) / a) - np.exp(-c/a)) / 964.8468371292845
31
 
32
  def create_point_cloud(img1, img2):
33
+ if img1.shape != img2.shape:
34
+ raise ValueError("Both images must have the same dimensions.")
35
+
36
+ h, w, _ = img1.shape
37
+ points = []
38
+ colors = []
39
+ for y in range(h):
40
+ for x in range(w):
41
+ # ピクセル位置 (x, y) のRGBをXYZとして取得
42
+ r, g, b = img1[y, x]
43
+ r = inv_func(r) * 0.9
44
+ g = inv_func(g) / 1.7 * 0.6
45
+ b = inv_func(b)
46
+ r *= 150
47
+ g *= 150
48
+ b *= 150
49
+ points.append([g, b, r]) # X, Y, Z
50
+ # 対応するピクセル位置の画像2の色を取得
51
+ colors.append(img2[y, x] / 255.0) # 色は0〜1にスケール
52
+
53
+ return np.array(points), np.array(colors)
54
 
55
  def point_cloud_to_glb(points, colors):
56
+ # Open3Dでポイントクラウドを作成
57
+ pc = o3d.geometry.PointCloud()
58
+ pc.points = o3d.utility.Vector3dVector(points)
59
+ pc.colors = o3d.utility.Vector3dVector(colors)
60
+
61
+ # 一時的にPLY形式で保存
62
+ temp_ply_file = "temp_output.ply"
63
+ o3d.io.write_point_cloud(temp_ply_file, pc)
64
+
65
+ # PLYをGLBに変換
66
+ mesh = trimesh.load(temp_ply_file)
67
+ glb_file = "output.glb"
68
+ mesh.export(glb_file)
69
+
70
+ return glb_file
71
 
72
  def visualize_3d(image1, image2):
73
+ print("Processing...")
74
+ # PIL画像をOpenCV形式に変換
75
+ img1 = convert_pil_to_opencv(image1)
76
+ img2 = convert_pil_to_opencv(image2)
77
 
78
+ # ポイントクラウド生成
79
+ points, colors = create_point_cloud(img1, img2)
80
 
81
+ # GLB形式に変換
82
+ glb_file = point_cloud_to_glb(points, colors)
83
 
84
+ return glb_file
85
 
86
  def scale_image(original_image):
87
+ aspect_ratio = original_image.width / original_image.height
88
 
89
+ if original_image.width > original_image.height:
90
+ new_width = 1024
91
+ new_height = round(new_width / aspect_ratio)
92
+ else:
93
+ new_height = 1024
94
+ new_width = round(new_height * aspect_ratio)
95
 
96
+ resized_original = original_image.resize((new_width, new_height), Image.LANCZOS)
97
 
98
+ return resized_original
99
 
100
  def get_edge_mode_color(img, edge_width=10):
101
+ # 外周の10ピクセル領域を取得
102
+ left = img.crop((0, 0, edge_width, img.height)) # 左端
103
+ right = img.crop((img.width - edge_width, 0, img.width, img.height)) # 右端
104
+ top = img.crop((0, 0, img.width, edge_width)) # 上端
105
+ bottom = img.crop((0, img.height - edge_width, img.width, img.height)) # 下端
106
 
107
+ # 各領域のピクセルデータを取得して結合
108
+ colors = list(left.getdata()) + list(right.getdata()) + list(top.getdata()) + list(bottom.getdata())
109
 
110
+ # 最頻値(mode)を計算
111
+ mode_color = Counter(colors).most_common(1)[0][0] # 最も頻繁に出現する色を取得
112
 
113
+ return mode_color
114
 
115
  def paste_image(resized_img):
116
+ # 外周10pxの最頻値を背景色に設定
117
+ mode_color = get_edge_mode_color(resized_img, edge_width=10)
118
+ mode_background = Image.new("RGBA", (1024, 1024), mode_color)
119
+ mode_background = mode_background.convert('RGB')
120
 
121
+ x = (1024 - resized_img.width) // 2
122
+ y = (1024 - resized_img.height) // 2
123
+ mode_background.paste(resized_img, (x, y))
124
 
125
+ return mode_background
126
 
127
  def outpaint_image(image):
128
  if type(image) == type(None):
129
+ return None
130
  resized_img = scale_image(image)
131
  image = paste_image(resized_img)
132
 
 
134
 
135
  @spaces.GPU
136
  def predict_image(cond_image, prompt, negative_prompt):
137
+ if pipe is None:
138
+ load_model()
139
+
140
+ generator = torch.Generator()
141
+ generator.manual_seed(random.randint(0, 2147483647))
142
+
143
+ prompt = 'position map, 1girl, white background'
144
+ negative_prompt = "lowres, bad anatomy, bad hands, bad feet, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry"
145
+
146
+ image = pipe(
147
+ prompt,
148
+ prompt,
149
+ cond_image,
150
+ negative_prompt=negative_prompt,
151
+ width=1024,
152
+ height=1024,
153
+ guidance_scale=8,
154
+ num_inference_steps=20,
155
+ generator=generator,
156
+ guess_mode = True,
157
+ controlnet_conditioning_scale = 0.6,
158
+ ).images[0]
159
 
160
+ return image
161
 
162
  # Gradioアプリケーション
163
  with gr.Blocks() as demo: