Spaces:
Sleeping
Sleeping
de
Browse files
app.py
CHANGED
@@ -1,136 +1,32 @@
|
|
1 |
import open3d_zerogpu_fix
|
2 |
-
import spaces
|
3 |
-
from diffusers import ControlNetModel
|
4 |
-
from diffusers import StableDiffusionXLControlNetPipeline
|
5 |
-
from diffusers import EulerAncestralDiscreteScheduler
|
6 |
-
from PIL import Image
|
7 |
-
import torch
|
8 |
import numpy as np
|
9 |
-
import
|
10 |
import gradio as gr
|
11 |
-
from torchvision import transforms
|
12 |
-
from controlnet_aux import OpenposeDetector
|
13 |
-
import random
|
14 |
import open3d as o3d
|
15 |
-
from collections import Counter
|
16 |
import trimesh
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
0.5:{"width":704,"height":1408},
|
20 |
-
0.57:{"width":768,"height":1344},
|
21 |
-
0.68:{"width":832,"height":1216},
|
22 |
-
0.72:{"width":832,"height":1152},
|
23 |
-
0.78:{"width":896,"height":1152},
|
24 |
-
0.82:{"width":896,"height":1088},
|
25 |
-
0.88:{"width":960,"height":1088},
|
26 |
-
0.94:{"width":960,"height":1024},
|
27 |
-
1.00:{"width":1024,"height":1024},
|
28 |
-
1.13:{"width":1088,"height":960},
|
29 |
-
1.21:{"width":1088,"height":896},
|
30 |
-
1.29:{"width":1152,"height":896},
|
31 |
-
1.38:{"width":1152,"height":832},
|
32 |
-
1.46:{"width":1216,"height":832},
|
33 |
-
1.67:{"width":1280,"height":768},
|
34 |
-
1.75:{"width":1344,"height":768},
|
35 |
-
2.00:{"width":1408,"height":704}
|
36 |
-
}
|
37 |
-
ratios = np.array(list(ratios_map.keys()))
|
38 |
-
|
39 |
-
|
40 |
-
openpose = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
|
41 |
-
|
42 |
-
controlnet = ControlNetModel.from_pretrained(
|
43 |
-
"yeq6x/Image2PositionColor_v3",
|
44 |
-
torch_dtype=torch.float16
|
45 |
-
).to('cuda')
|
46 |
-
|
47 |
-
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
48 |
-
"yeq6x/animagine_position_map",
|
49 |
-
controlnet=controlnet,
|
50 |
-
torch_dtype=torch.float16,
|
51 |
-
low_cpu_mem_usage=True,
|
52 |
-
offload_state_dict=True,
|
53 |
-
).to('cuda').to(torch.float16)
|
54 |
-
|
55 |
-
pipe.scheduler = EulerAncestralDiscreteScheduler(
|
56 |
-
beta_start=0.00085,
|
57 |
-
beta_end=0.012,
|
58 |
-
beta_schedule="scaled_linear",
|
59 |
-
num_train_timesteps=1000,
|
60 |
-
steps_offset=1
|
61 |
-
)
|
62 |
-
# pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7)
|
63 |
-
# pipe.enable_xformers_memory_efficient_attention()
|
64 |
-
pipe.force_zeros_for_empty_prompt = False
|
65 |
-
|
66 |
-
def get_size(init_image):
|
67 |
-
w,h=init_image.size
|
68 |
-
curr_ratio = w/h
|
69 |
-
ind = np.argmin(np.abs(curr_ratio-ratios))
|
70 |
-
ratio = ratios[ind]
|
71 |
-
chosen_ratio = ratios_map[ratio]
|
72 |
-
w,h = chosen_ratio['width'], chosen_ratio['height']
|
73 |
-
return w,h
|
74 |
-
|
75 |
-
def resize_image(image):
|
76 |
-
image = image.convert('RGB')
|
77 |
-
w,h = get_size(image)
|
78 |
-
resized_image = image.resize((w, h))
|
79 |
-
return resized_image
|
80 |
-
|
81 |
-
def resize_image_old(image):
|
82 |
-
image = image.convert('RGB')
|
83 |
-
current_size = image.size
|
84 |
-
if current_size[0] > current_size[1]:
|
85 |
-
center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1]))
|
86 |
-
else:
|
87 |
-
center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0]))
|
88 |
-
resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024))
|
89 |
-
return resized_image
|
90 |
|
|
|
|
|
|
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
images = pipe(
|
97 |
-
prompt, negative_prompt=negative_prompt, image=pose_image, num_inference_steps=20, controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
98 |
-
generator=generator, height=input_image.size[1], width=input_image.size[0],
|
99 |
-
).images
|
100 |
-
return images
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
pose_image = openpose(input_image, include_body=True, include_hand=True, include_face=True)
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
return [pose_image,images[0]]
|
113 |
-
|
114 |
-
@spaces.GPU
|
115 |
-
def predict_image(cond_image, prompt, negative_prompt, controlnet_conditioning_scale):
|
116 |
-
print("predict position map")
|
117 |
-
global pipe
|
118 |
-
generator = torch.Generator()
|
119 |
-
generator.manual_seed(random.randint(0, 2147483647))
|
120 |
-
image = pipe(
|
121 |
-
prompt,
|
122 |
-
negative_prompt=negative_prompt,
|
123 |
-
image = cond_image,
|
124 |
-
width=1024,
|
125 |
-
height=1024,
|
126 |
-
guidance_scale=8,
|
127 |
-
num_inference_steps=20,
|
128 |
-
generator=generator,
|
129 |
-
guess_mode = True,
|
130 |
-
controlnet_conditioning_scale = controlnet_conditioning_scale
|
131 |
-
).images[0]
|
132 |
-
|
133 |
-
return image
|
134 |
|
135 |
def convert_pil_to_opencv(pil_image):
|
136 |
return np.array(pil_image)
|
@@ -243,25 +139,56 @@ def outpaint_image(image):
|
|
243 |
image = paste_image(resized_img)
|
244 |
|
245 |
return image
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import open3d_zerogpu_fix
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
import gradio as gr
|
|
|
|
|
|
|
5 |
import open3d as o3d
|
|
|
6 |
import trimesh
|
7 |
+
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, EulerAncestralDiscreteScheduler
|
8 |
+
import torch
|
9 |
+
from collections import Counter
|
10 |
+
import random
|
11 |
|
12 |
+
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
pipe = None
|
15 |
+
device = None
|
16 |
+
torch_dtype = None
|
17 |
|
18 |
+
def load_model():
|
19 |
+
global pipe, device, torch_dtype
|
20 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
+
torch_dtype = torch.float16 if device == "cuda" else torch.float32
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
24 |
+
"yeq6x/animagine_position_map",
|
25 |
+
controlnet=ControlNetModel.from_pretrained("yeq6x/Image2PositionColor_v3"),
|
26 |
+
).to(device)
|
27 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
|
|
|
|
28 |
|
29 |
+
return pipe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
def convert_pil_to_opencv(pil_image):
|
32 |
return np.array(pil_image)
|
|
|
139 |
image = paste_image(resized_img)
|
140 |
|
141 |
return image
|
142 |
+
|
143 |
+
@spaces.GPU
|
144 |
+
def predict_image(cond_image, prompt, negative_prompt):
|
145 |
+
print("predict position map")
|
146 |
+
global pipe
|
147 |
+
generator = torch.Generator()
|
148 |
+
generator.manual_seed(random.randint(0, 2147483647))
|
149 |
+
image = pipe(
|
150 |
+
prompt,
|
151 |
+
prompt,
|
152 |
+
cond_image,
|
153 |
+
negative_prompt=negative_prompt,
|
154 |
+
width=1024,
|
155 |
+
height=1024,
|
156 |
+
guidance_scale=8,
|
157 |
+
num_inference_steps=20,
|
158 |
+
generator=generator,
|
159 |
+
guess_mode = True,
|
160 |
+
controlnet_conditioning_scale = 0.6,
|
161 |
+
).images[0]
|
162 |
+
|
163 |
+
return image
|
164 |
+
|
165 |
+
load_model()
|
166 |
+
|
167 |
+
# Gradioアプリケーション
|
168 |
+
with gr.Blocks() as demo:
|
169 |
+
gr.Markdown("## Position Map Visualizer")
|
170 |
+
|
171 |
+
with gr.Row():
|
172 |
+
with gr.Column():
|
173 |
+
with gr.Row():
|
174 |
+
img1 = gr.Image(type="pil", label="color Image", height=300)
|
175 |
+
img2 = gr.Image(type="pil", label="map Image", height=300)
|
176 |
+
prompt = gr.Textbox("position map, 1girl, white background", label="Prompt")
|
177 |
+
negative_prompt = gr.Textbox("lowres, bad anatomy, bad hands, bad feet, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry", label="Negative Prompt")
|
178 |
+
predict_map_btn = gr.Button("Predict Position Map")
|
179 |
+
visualize_3d_btn = gr.Button("Generate 3D Point Cloud")
|
180 |
+
with gr.Column():
|
181 |
+
reconstruction_output = gr.Model3D(label="3D Viewer", height=600)
|
182 |
+
gr.Examples(
|
183 |
+
examples=[
|
184 |
+
["resources/source/000006.png", "resources/target/000006.png"],
|
185 |
+
["resources/source/006420.png", "resources/target/006420.png"],
|
186 |
+
],
|
187 |
+
inputs=[img1, img2]
|
188 |
+
)
|
189 |
+
|
190 |
+
img1.input(outpaint_image, inputs=img1, outputs=img1)
|
191 |
+
predict_map_btn.click(predict_image, inputs=[img1, prompt, negative_prompt], outputs=img2)
|
192 |
+
visualize_3d_btn.click(visualize_3d, inputs=[img2, img1], outputs=reconstruction_output)
|
193 |
+
|
194 |
+
demo.launch()
|