Spaces:
Sleeping
Sleeping
load_model
Browse files
app.py
CHANGED
@@ -1,192 +1,138 @@
|
|
1 |
import spaces
|
2 |
-
|
|
|
|
|
3 |
from PIL import Image
|
4 |
-
import gradio as gr
|
5 |
-
import open3d as o3d
|
6 |
-
import trimesh
|
7 |
-
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, EulerAncestralDiscreteScheduler
|
8 |
import torch
|
9 |
-
|
10 |
-
import
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
def
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
# GLB形式に変換
|
88 |
-
glb_file = point_cloud_to_glb(points, colors)
|
89 |
-
|
90 |
-
return glb_file
|
91 |
-
|
92 |
-
def scale_image(original_image):
|
93 |
-
aspect_ratio = original_image.width / original_image.height
|
94 |
-
|
95 |
-
if original_image.width > original_image.height:
|
96 |
-
new_width = 1024
|
97 |
-
new_height = round(new_width / aspect_ratio)
|
98 |
-
else:
|
99 |
-
new_height = 1024
|
100 |
-
new_width = round(new_height * aspect_ratio)
|
101 |
-
|
102 |
-
resized_original = original_image.resize((new_width, new_height), Image.LANCZOS)
|
103 |
-
|
104 |
-
return resized_original
|
105 |
-
|
106 |
-
def get_edge_mode_color(img, edge_width=10):
|
107 |
-
# 外周の10ピクセル領域を取得
|
108 |
-
left = img.crop((0, 0, edge_width, img.height)) # 左端
|
109 |
-
right = img.crop((img.width - edge_width, 0, img.width, img.height)) # 右端
|
110 |
-
top = img.crop((0, 0, img.width, edge_width)) # 上端
|
111 |
-
bottom = img.crop((0, img.height - edge_width, img.width, img.height)) # 下端
|
112 |
-
|
113 |
-
# 各領域のピクセルデータを取得して結合
|
114 |
-
colors = list(left.getdata()) + list(right.getdata()) + list(top.getdata()) + list(bottom.getdata())
|
115 |
-
|
116 |
-
# 最頻値(mode)を計算
|
117 |
-
mode_color = Counter(colors).most_common(1)[0][0] # 最も頻繁に出現する色を取得
|
118 |
-
|
119 |
-
return mode_color
|
120 |
-
|
121 |
-
def paste_image(resized_img):
|
122 |
-
# 外周10pxの最頻値を背景色に設定
|
123 |
-
mode_color = get_edge_mode_color(resized_img, edge_width=10)
|
124 |
-
mode_background = Image.new("RGBA", (1024, 1024), mode_color)
|
125 |
-
mode_background = mode_background.convert('RGB')
|
126 |
-
|
127 |
-
x = (1024 - resized_img.width) // 2
|
128 |
-
y = (1024 - resized_img.height) // 2
|
129 |
-
mode_background.paste(resized_img, (x, y))
|
130 |
-
|
131 |
-
return mode_background
|
132 |
|
133 |
-
def outpaint_image(image):
|
134 |
-
if type(image) == type(None):
|
135 |
-
return None
|
136 |
-
resized_img = scale_image(image)
|
137 |
-
image = paste_image(resized_img)
|
138 |
-
|
139 |
-
return image
|
140 |
|
141 |
@spaces.GPU
|
142 |
-
def
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
prompt,
|
150 |
-
cond_image,
|
151 |
-
negative_prompt=negative_prompt,
|
152 |
-
width=1024,
|
153 |
-
height=1024,
|
154 |
-
guidance_scale=8,
|
155 |
-
num_inference_steps=20,
|
156 |
-
generator=generator,
|
157 |
-
guess_mode = True,
|
158 |
-
controlnet_conditioning_scale = 0.6,
|
159 |
-
).images[0]
|
160 |
-
|
161 |
-
return image
|
162 |
-
|
163 |
-
load_model()
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
|
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import spaces
|
2 |
+
from diffusers import ControlNetModel
|
3 |
+
from diffusers import StableDiffusionXLControlNetPipeline
|
4 |
+
from diffusers import EulerAncestralDiscreteScheduler
|
5 |
from PIL import Image
|
|
|
|
|
|
|
|
|
6 |
import torch
|
7 |
+
import numpy as np
|
8 |
+
import cv2
|
9 |
+
import gradio as gr
|
10 |
+
from torchvision import transforms
|
11 |
+
from controlnet_aux import OpenposeDetector
|
12 |
+
|
13 |
+
ratios_map = {
|
14 |
+
0.5:{"width":704,"height":1408},
|
15 |
+
0.57:{"width":768,"height":1344},
|
16 |
+
0.68:{"width":832,"height":1216},
|
17 |
+
0.72:{"width":832,"height":1152},
|
18 |
+
0.78:{"width":896,"height":1152},
|
19 |
+
0.82:{"width":896,"height":1088},
|
20 |
+
0.88:{"width":960,"height":1088},
|
21 |
+
0.94:{"width":960,"height":1024},
|
22 |
+
1.00:{"width":1024,"height":1024},
|
23 |
+
1.13:{"width":1088,"height":960},
|
24 |
+
1.21:{"width":1088,"height":896},
|
25 |
+
1.29:{"width":1152,"height":896},
|
26 |
+
1.38:{"width":1152,"height":832},
|
27 |
+
1.46:{"width":1216,"height":832},
|
28 |
+
1.67:{"width":1280,"height":768},
|
29 |
+
1.75:{"width":1344,"height":768},
|
30 |
+
2.00:{"width":1408,"height":704}
|
31 |
+
}
|
32 |
+
ratios = np.array(list(ratios_map.keys()))
|
33 |
+
|
34 |
+
|
35 |
+
openpose = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
|
36 |
+
|
37 |
+
controlnet = ControlNetModel.from_pretrained(
|
38 |
+
"briaai/BRIA-2.3-ControlNet-Pose",
|
39 |
+
torch_dtype=torch.float16
|
40 |
+
).to('cuda')
|
41 |
+
|
42 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
43 |
+
"briaai/BRIA-2.3",
|
44 |
+
controlnet=controlnet,
|
45 |
+
torch_dtype=torch.float16,
|
46 |
+
low_cpu_mem_usage=True,
|
47 |
+
offload_state_dict=True,
|
48 |
+
).to('cuda').to(torch.float16)
|
49 |
+
|
50 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler(
|
51 |
+
beta_start=0.00085,
|
52 |
+
beta_end=0.012,
|
53 |
+
beta_schedule="scaled_linear",
|
54 |
+
num_train_timesteps=1000,
|
55 |
+
steps_offset=1
|
56 |
+
)
|
57 |
+
# pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7)
|
58 |
+
# pipe.enable_xformers_memory_efficient_attention()
|
59 |
+
pipe.force_zeros_for_empty_prompt = False
|
60 |
+
|
61 |
+
def get_size(init_image):
|
62 |
+
w,h=init_image.size
|
63 |
+
curr_ratio = w/h
|
64 |
+
ind = np.argmin(np.abs(curr_ratio-ratios))
|
65 |
+
ratio = ratios[ind]
|
66 |
+
chosen_ratio = ratios_map[ratio]
|
67 |
+
w,h = chosen_ratio['width'], chosen_ratio['height']
|
68 |
+
return w,h
|
69 |
+
|
70 |
+
def resize_image(image):
|
71 |
+
image = image.convert('RGB')
|
72 |
+
w,h = get_size(image)
|
73 |
+
resized_image = image.resize((w, h))
|
74 |
+
return resized_image
|
75 |
+
|
76 |
+
def resize_image_old(image):
|
77 |
+
image = image.convert('RGB')
|
78 |
+
current_size = image.size
|
79 |
+
if current_size[0] > current_size[1]:
|
80 |
+
center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1]))
|
81 |
+
else:
|
82 |
+
center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0]))
|
83 |
+
resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024))
|
84 |
+
return resized_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
@spaces.GPU
|
88 |
+
def generate_(prompt, negative_prompt, pose_image, input_image, num_steps, controlnet_conditioning_scale, seed):
|
89 |
+
generator = torch.Generator("cuda").manual_seed(seed)
|
90 |
+
images = pipe(
|
91 |
+
prompt, negative_prompt=negative_prompt, image=pose_image, num_inference_steps=num_steps, controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
92 |
+
generator=generator, height=input_image.size[1], width=input_image.size[0],
|
93 |
+
).images
|
94 |
+
return images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
+
@spaces.GPU
|
97 |
+
def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed):
|
98 |
+
|
99 |
+
# resize input_image to 1024x1024
|
100 |
+
input_image = resize_image(input_image)
|
101 |
+
|
102 |
+
pose_image = openpose(input_image, include_body=True, include_hand=True, include_face=True)
|
103 |
|
104 |
+
images = generate_(prompt, negative_prompt, pose_image, input_image, num_steps, controlnet_conditioning_scale, seed)
|
105 |
+
|
106 |
+
return [pose_image,images[0]]
|
107 |
+
|
108 |
+
block = gr.Blocks().queue()
|
109 |
+
|
110 |
+
with block:
|
111 |
+
gr.Markdown("## BRIA 2.3 ControlNet Pose")
|
112 |
+
gr.HTML('''
|
113 |
+
<p style="margin-bottom: 10px; font-size: 94%">
|
114 |
+
This is a demo for ControlNet Pose that using
|
115 |
+
<a href="https://huggingface.co/briaai/BRIA-2.3" target="_blank">BRIA 2.3 text-to-image model</a> as backbone.
|
116 |
+
Trained on licensed data, BRIA 2.3 provide full legal liability coverage for copyright and privacy infringement.
|
117 |
+
</p>
|
118 |
+
''')
|
119 |
+
with gr.Row():
|
120 |
+
with gr.Column():
|
121 |
+
input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
|
122 |
+
prompt = gr.Textbox(label="Prompt")
|
123 |
+
negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers")
|
124 |
+
num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1)
|
125 |
+
controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05)
|
126 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,)
|
127 |
+
run_button = gr.Button(value="Run")
|
128 |
+
|
129 |
+
with gr.Column():
|
130 |
+
with gr.Row():
|
131 |
+
pose_image_output = gr.Image(label="Pose Image", type="pil", interactive=False)
|
132 |
+
generated_image_output = gr.Image(label="Generated Image", type="pil", interactive=False)
|
133 |
+
|
134 |
+
ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed]
|
135 |
+
run_button.click(fn=process, inputs=ips, outputs=[pose_image_output, generated_image_output])
|
136 |
+
|
137 |
+
|
138 |
+
block.launch(debug = True)
|