yeq6x's picture
add description and examples
01a01d7
raw
history blame
11.4 kB
import gradio as gr
# import spaces
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
from model_module import AutoencoderModule
from dataset import MyDataset, load_filenames
from utils import DistanceMapLogger
import numpy as np
from PIL import Image
import base64
from io import BytesIO
# モデルとデータの読み込み
def load_model():
model_path = "checkpoints/autoencoder-epoch=49-train_loss=1.01.ckpt"
feature_dim = 64
model = AutoencoderModule(feature_dim=feature_dim)
state_dict = torch.load(model_path)
# # state_dict のキーを修正
# new_state_dict = {}
# for key in state_dict:
# new_key = "model." + key
# new_state_dict[new_key] = state_dict[key]
model.load_state_dict(state_dict['state_dict'])
model.eval()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
print("Model loaded successfully.")
return model, device
def load_data(device, img_dir="resources/trainB/", image_size=112, batch_size=32):
filenames = load_filenames(img_dir)
train_X = filenames[:1000]
train_ds = MyDataset(train_X, img_dir=img_dir, img_size=image_size)
train_loader = DataLoader(
train_ds,
batch_size=batch_size,
shuffle=True,
num_workers=0,
)
iterator = iter(train_loader)
x, _, _ = next(iterator)
x = x.to(device)
x = x[:,0].to(device)
print("Data loaded successfully.")
return x
model, device = load_model()
image_size = 112
batch_size = 32
x = load_data(device)
# アップロード画像の前処理
def preprocess_uploaded_image(uploaded_image, image_size):
# ndarrayの場合はPILイメージに変換
if type(uploaded_image) == np.ndarray:
uploaded_image = Image.fromarray(uploaded_image)
uploaded_image = uploaded_image.convert("RGB")
uploaded_image = uploaded_image.resize((image_size, image_size))
uploaded_image = np.array(uploaded_image).transpose(2, 0, 1) / 255.0
uploaded_image = torch.tensor(uploaded_image, dtype=torch.float32).unsqueeze(0).to(device)
return uploaded_image
# ヒートマップの生成関数
# @spaces.GPU
def get_heatmaps(source_num, x_coords, y_coords, uploaded_image):
if type(uploaded_image) == str:
uploaded_image = Image.open(uploaded_image)
if type(source_num) == str:
source_num = int(source_num)
if type(x_coords) == str:
x_coords = int(x_coords)
if type(y_coords) == str:
y_coords = int(y_coords)
with torch.no_grad():
dec5, _ = model(x)
img = x
feature_map = dec5
batch_size = feature_map.size(0)
feature_dim = feature_map.size(1)
# アップロード画像の前処理
if uploaded_image is not None:
uploaded_image = preprocess_uploaded_image(uploaded_image, image_size)
target_feature_map, _ = model(uploaded_image)
img = torch.cat((img, uploaded_image))
feature_map = torch.cat((feature_map, target_feature_map))
batch_size += 1
else:
uploaded_image = torch.zeros(1, 3, image_size, image_size, device=device)
target_num = batch_size - 1
x_coords = [x_coords] * batch_size
y_coords = [y_coords] * batch_size
vectors = feature_map[torch.arange(feature_map.size(0)), :, y_coords, x_coords]
vector = vectors[source_num]
reshaped_feature_map = feature_map.permute(0, 2, 3, 1).view(feature_map.size(0), -1, feature_dim)
batch_distance_map = F.pairwise_distance(reshaped_feature_map, vector).view(feature_map.size(0), image_size, image_size)
norm_batch_distance_map = 1 / torch.cosh(20 * (batch_distance_map - batch_distance_map.min()) / (batch_distance_map.max() - batch_distance_map.min())) ** 2
source_map = norm_batch_distance_map[source_num]
target_map = norm_batch_distance_map[target_num]
alpha = 0.7
blended_source = (1 - alpha) * img[source_num] + alpha * torch.cat(((norm_batch_distance_map[source_num] / norm_batch_distance_map[source_num].max()).unsqueeze(0), torch.zeros(2, image_size, image_size, device=device)))
blended_target = (1 - alpha) * img[target_num] + alpha * torch.cat(((norm_batch_distance_map[target_num] / norm_batch_distance_map[target_num].max()).unsqueeze(0), torch.zeros(2, image_size, image_size, device=device)))
# Matplotlibでプロットして画像として保存
fig, axs = plt.subplots(2, 2, figsize=(10, 10))
axs[0, 0].imshow(source_map.cpu(), cmap='hot')
axs[0, 0].set_title("Source Map")
axs[0, 1].imshow(target_map.cpu(), cmap='hot')
axs[0, 1].set_title("Target Map")
axs[1, 0].imshow(blended_source.permute(1, 2, 0).cpu())
axs[1, 0].set_title("Blended Source")
axs[1, 1].imshow(blended_target.permute(1, 2, 0).cpu())
axs[1, 1].set_title("Blended Target")
for ax in axs.flat:
ax.axis('off')
plt.tight_layout()
plt.close(fig)
return fig
def process_image(cropped_image_data):
# Base64からPILイメージに変換
header, base64_data = cropped_image_data.split(',', 1)
image_data = base64.b64decode(base64_data)
image = Image.open(BytesIO(image_data))
return image
# JavaScriptコード
scripts = """
async () => {
const script = document.createElement("script");
script.src = "https://cdnjs.cloudflare.com/ajax/libs/cropperjs/1.5.13/cropper.min.js";
document.head.appendChild(script);
const style = document.createElement("link");
style.rel = "stylesheet";
style.href = "https://cdnjs.cloudflare.com/ajax/libs/cropperjs/1.5.13/cropper.min.css";
document.head.appendChild(style);
script.onload = () => {
let cropper;
document.getElementById("input_file_button").onclick = function() {
document.querySelector("#input_file").click();
};
// GradioのFileコンポーネントから画像を読み込む
document.querySelector("#input_file").addEventListener("change", function(e) {
const files = e.target.files;
console.log(files);
if (files && files.length > 0) {
console.log("File selected");
document.querySelector("#input_file_button").style.display = "none";
document.querySelector("#crop_view").style.display = "block";
document.querySelector("#crop_button").style.display = "block";
const url = URL.createObjectURL(files[0]);
const crop_view = document.getElementById("crop_view");
crop_view.src = url;
if (cropper) {
cropper.destroy();
}
cropper = new Cropper(crop_view, {
aspectRatio: 1,
viewMode: 1,
});
}
});
// GradioボタンにJavaScriptの機能を追加
document.getElementById("crop_button").onclick = function() {
if (cropper) {
const canvas = cropper.getCroppedCanvas();
const croppedImageData = canvas.toDataURL();
// Gradioにクロップ画像を送信
const textbox = document.querySelector("#cropped_image_data textarea");
textbox.value = croppedImageData;
textbox.dispatchEvent(new Event("input", { bubbles: true }));
document.getElementById("crop_view").style.display = "none";
document.getElementById("crop_button").style.display = "none";
document.querySelector("#input_file_button").style.display = "block";
cropper.destroy();
}
};
document.getElementById("crop_view").style.display = "none";
document.getElementById("crop_button").style.display = "none";
};
}
"""
with gr.Blocks() as demo:
# title
gr.Markdown("# TripletGeoEncoder Feature Map Visualization")
# description
gr.Markdown("This demo visualizes the feature maps of a TripletGeoEncoder trained on the CelebA dataset using self-supervised learning without annotations from only 1000 images. "
"The feature maps are visualized as heatmaps, where the source map shows the distance of each pixel in the source image to the selected pixel, and the target map shows the distance of each pixel in the target image to the selected pixel. "
"The blended source and target images show the source and target images with the source and target maps overlaid, respectively. "
"For further information, please contact me on X (formerly Twitter): @Yeq6X.")
with gr.Row():
with gr.Column():
source_num = gr.Slider(0, batch_size - 1, step=1, label="Source Image Index")
x_coords = gr.Slider(0, image_size - 1, step=1, value=image_size // 2, label="X Coordinate")
y_coords = gr.Slider(0, image_size - 1, step=1, value=image_size // 2, label="Y Coordinate")
# GradioのFileコンポーネントでファイル選択ボタンを追加
gr.HTML('<input type="file" id="input_file" style="display:none;">')
input_file_button = gr.Button("Upload Image and Crop", elem_id="input_file_button", variant="primary")
crop_button = gr.Button("Crop", elem_id="crop_button", variant="primary")
# 画像を表示するためのHTML画像タグをGradioで表示
gr.HTML('<img id="crop_view" style="max-width:100%;">')
# Gradioのボタンコンポーネントを追加し、IDを付与
# クロップされた画像データのテキストボックス(Base64データ)
cropped_image_data = gr.Textbox(visible=False, elem_id="cropped_image_data")
input_image = gr.Image(label="Cropped Image", elem_id="input_image")
# cropped_image_dataが更新されたらprocess_imageを呼び出す
cropped_image_data.change(process_image, inputs=cropped_image_data, outputs=input_image)
# examples
gr.Markdown("# Examples")
gr.Examples(
examples=[
["0", "50", "50", "resources/examples/2488.jpg"],
["0", "50", "50", "resources/examples/2899.jpg"]
],
inputs=[source_num, x_coords, y_coords, input_image],
)
with gr.Column():
output_plot = gr.Plot()
# Gradioインターフェースの代わり
source_num.change(get_heatmaps, inputs=[source_num, x_coords, y_coords, input_image], outputs=output_plot)
x_coords.change(get_heatmaps, inputs=[source_num, x_coords, y_coords, input_image], outputs=output_plot)
y_coords.change(get_heatmaps, inputs=[source_num, x_coords, y_coords, input_image], outputs=output_plot)
input_image.change(get_heatmaps, inputs=[source_num, x_coords, y_coords, input_image], outputs=output_plot)
# JavaScriptコードをロード
demo.load(None, None, None, js=scripts)
demo.launch()