Spaces:
Sleeping
Sleeping
gpu
Browse files
app.py
CHANGED
@@ -81,81 +81,146 @@ def load_keypoints(device, img_dir="resources/trainB/", image_size=112, batch_si
|
|
81 |
try:
|
82 |
@spaces.GPU
|
83 |
def get_heatmaps(source_num, x_coords, y_coords, uploaded_image):
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
except:
|
86 |
def get_heatmaps(source_num, x_coords, y_coords, uploaded_image):
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
plt.tight_layout()
|
131 |
-
plt.close(fig)
|
132 |
-
return fig
|
133 |
-
|
134 |
-
def setup(model_dict, input_image=None):
|
135 |
-
global model, device, x, test_imgs, points, mean_vector_list
|
136 |
-
# str -> dictに変換
|
137 |
-
if type(model_dict) == str:
|
138 |
-
model_dict = eval(model_dict)
|
139 |
-
model_name = model_dict["name"]
|
140 |
-
feature_dim = model_dict["feature_dim"]
|
141 |
-
model_path = f"checkpoints/{model_name}"
|
142 |
-
model, device = load_model(model_path, feature_dim)
|
143 |
-
x = load_data(device)
|
144 |
-
test_imgs, points = load_keypoints(device)
|
145 |
-
feature_map, _ = model(test_imgs)
|
146 |
-
mean_vector_list = utils.get_mean_vector(feature_map, points)
|
147 |
-
|
148 |
-
if input_image is not None:
|
149 |
-
fig = get_heatmaps(0, image_size // 2, image_size // 2, input_image)
|
150 |
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
|
|
|
|
|
|
|
|
152 |
|
153 |
-
models = [{"name": "ae_model_tf_2024-03-05_00-35-21.pth", "feature_dim": 32},
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
|
158 |
-
setup(models[0])
|
159 |
|
160 |
|
161 |
with gr.Blocks() as demo:
|
|
|
81 |
try:
|
82 |
@spaces.GPU
|
83 |
def get_heatmaps(source_num, x_coords, y_coords, uploaded_image):
|
84 |
+
if type(uploaded_image) == str:
|
85 |
+
uploaded_image = Image.open(uploaded_image)
|
86 |
+
if type(source_num) == str:
|
87 |
+
source_num = int(source_num)
|
88 |
+
if type(x_coords) == str:
|
89 |
+
x_coords = int(x_coords)
|
90 |
+
if type(y_coords) == str:
|
91 |
+
y_coords = int(y_coords)
|
92 |
+
|
93 |
+
dec5, _ = model(x)
|
94 |
+
feature_map = dec5
|
95 |
+
# アップロード画像の前処理
|
96 |
+
if uploaded_image is not None:
|
97 |
+
uploaded_image = utils.preprocess_uploaded_image(uploaded_image['composite'], image_size)
|
98 |
+
else:
|
99 |
+
uploaded_image = torch.zeros(1, 3, image_size, image_size, device=device)
|
100 |
+
target_feature_map, _ = model(uploaded_image)
|
101 |
+
img = torch.cat((x, uploaded_image))
|
102 |
+
feature_map = torch.cat((feature_map, target_feature_map))
|
103 |
+
|
104 |
+
source_map, target_map, blended_source, blended_target = utils.get_heatmaps(img, feature_map, source_num, x_coords, y_coords, uploaded_image)
|
105 |
+
keypoint_maps, blended_tensors = utils.get_keypoint_heatmaps(target_feature_map, mean_vector_list, points.size(1), uploaded_image)
|
106 |
+
|
107 |
+
# Matplotlibでプロットして画像として保存
|
108 |
+
fig, axs = plt.subplots(2, 3, figsize=(10, 6))
|
109 |
+
axs[0, 0].imshow(source_map, cmap='hot')
|
110 |
+
axs[0, 0].set_title("Source Map")
|
111 |
+
axs[0, 1].imshow(target_map, cmap='hot')
|
112 |
+
axs[0, 1].set_title("Target Map")
|
113 |
+
axs[0, 2].imshow(keypoint_maps[0], cmap='hot')
|
114 |
+
axs[0, 2].set_title("Keypoint Map")
|
115 |
+
axs[1, 0].imshow(blended_source.permute(1, 2, 0))
|
116 |
+
axs[1, 0].set_title("Blended Source")
|
117 |
+
axs[1, 1].imshow(blended_target.permute(1, 2, 0))
|
118 |
+
axs[1, 1].set_title("Blended Target")
|
119 |
+
axs[1, 2].imshow(blended_tensors[0].permute(1, 2, 0))
|
120 |
+
axs[1, 2].set_title("Blended Keypoint")
|
121 |
+
for ax in axs.flat:
|
122 |
+
ax.axis('off')
|
123 |
+
|
124 |
+
plt.tight_layout()
|
125 |
+
plt.close(fig)
|
126 |
+
return fig
|
127 |
+
|
128 |
+
def setup(model_dict, input_image=None):
|
129 |
+
global model, device, x, test_imgs, points, mean_vector_list
|
130 |
+
# str -> dictに変換
|
131 |
+
if type(model_dict) == str:
|
132 |
+
model_dict = eval(model_dict)
|
133 |
+
model_name = model_dict["name"]
|
134 |
+
feature_dim = model_dict["feature_dim"]
|
135 |
+
model_path = f"checkpoints/{model_name}"
|
136 |
+
model, device = load_model(model_path, feature_dim)
|
137 |
+
x = load_data(device)
|
138 |
+
test_imgs, points = load_keypoints(device)
|
139 |
+
feature_map, _ = model(test_imgs)
|
140 |
+
mean_vector_list = utils.get_mean_vector(feature_map, points)
|
141 |
+
|
142 |
+
if input_image is not None:
|
143 |
+
fig = get_heatmaps(0, image_size // 2, image_size // 2, input_image)
|
144 |
+
return fig
|
145 |
+
|
146 |
+
|
147 |
+
models = [{"name": "ae_model_tf_2024-03-05_00-35-21.pth", "feature_dim": 32},
|
148 |
+
{"name": "autoencoder-epoch=09-train_loss=1.00.ckpt", "feature_dim": 64},
|
149 |
+
{"name": "autoencoder-epoch=29-train_loss=1.01.ckpt", "feature_dim": 64},
|
150 |
+
{"name": "autoencoder-epoch=49-train_loss=1.01.ckpt", "feature_dim": 64}]
|
151 |
+
|
152 |
+
setup(models[0])
|
153 |
except:
|
154 |
def get_heatmaps(source_num, x_coords, y_coords, uploaded_image):
|
155 |
+
if type(uploaded_image) == str:
|
156 |
+
uploaded_image = Image.open(uploaded_image)
|
157 |
+
if type(source_num) == str:
|
158 |
+
source_num = int(source_num)
|
159 |
+
if type(x_coords) == str:
|
160 |
+
x_coords = int(x_coords)
|
161 |
+
if type(y_coords) == str:
|
162 |
+
y_coords = int(y_coords)
|
163 |
+
|
164 |
+
dec5, _ = model(x)
|
165 |
+
feature_map = dec5
|
166 |
+
# アップロード画像の前処理
|
167 |
+
if uploaded_image is not None:
|
168 |
+
uploaded_image = utils.preprocess_uploaded_image(uploaded_image['composite'], image_size)
|
169 |
+
else:
|
170 |
+
uploaded_image = torch.zeros(1, 3, image_size, image_size, device=device)
|
171 |
+
target_feature_map, _ = model(uploaded_image)
|
172 |
+
img = torch.cat((x, uploaded_image))
|
173 |
+
feature_map = torch.cat((feature_map, target_feature_map))
|
174 |
+
|
175 |
+
source_map, target_map, blended_source, blended_target = utils.get_heatmaps(img, feature_map, source_num, x_coords, y_coords, uploaded_image)
|
176 |
+
keypoint_maps, blended_tensors = utils.get_keypoint_heatmaps(target_feature_map, mean_vector_list, points.size(1), uploaded_image)
|
177 |
+
|
178 |
+
# Matplotlibでプロットして画像として保存
|
179 |
+
fig, axs = plt.subplots(2, 3, figsize=(10, 6))
|
180 |
+
axs[0, 0].imshow(source_map, cmap='hot')
|
181 |
+
axs[0, 0].set_title("Source Map")
|
182 |
+
axs[0, 1].imshow(target_map, cmap='hot')
|
183 |
+
axs[0, 1].set_title("Target Map")
|
184 |
+
axs[0, 2].imshow(keypoint_maps[0], cmap='hot')
|
185 |
+
axs[0, 2].set_title("Keypoint Map")
|
186 |
+
axs[1, 0].imshow(blended_source.permute(1, 2, 0))
|
187 |
+
axs[1, 0].set_title("Blended Source")
|
188 |
+
axs[1, 1].imshow(blended_target.permute(1, 2, 0))
|
189 |
+
axs[1, 1].set_title("Blended Target")
|
190 |
+
axs[1, 2].imshow(blended_tensors[0].permute(1, 2, 0))
|
191 |
+
axs[1, 2].set_title("Blended Keypoint")
|
192 |
+
for ax in axs.flat:
|
193 |
+
ax.axis('off')
|
194 |
+
|
195 |
+
plt.tight_layout()
|
196 |
+
plt.close(fig)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
return fig
|
198 |
+
|
199 |
+
def setup(model_dict, input_image=None):
|
200 |
+
global model, device, x, test_imgs, points, mean_vector_list
|
201 |
+
# str -> dictに変換
|
202 |
+
if type(model_dict) == str:
|
203 |
+
model_dict = eval(model_dict)
|
204 |
+
model_name = model_dict["name"]
|
205 |
+
feature_dim = model_dict["feature_dim"]
|
206 |
+
model_path = f"checkpoints/{model_name}"
|
207 |
+
model, device = load_model(model_path, feature_dim)
|
208 |
+
x = load_data(device)
|
209 |
+
test_imgs, points = load_keypoints(device)
|
210 |
+
feature_map, _ = model(test_imgs)
|
211 |
+
mean_vector_list = utils.get_mean_vector(feature_map, points)
|
212 |
|
213 |
+
if input_image is not None:
|
214 |
+
fig = get_heatmaps(0, image_size // 2, image_size // 2, input_image)
|
215 |
+
return fig
|
216 |
+
|
217 |
|
218 |
+
models = [{"name": "ae_model_tf_2024-03-05_00-35-21.pth", "feature_dim": 32},
|
219 |
+
{"name": "autoencoder-epoch=09-train_loss=1.00.ckpt", "feature_dim": 64},
|
220 |
+
{"name": "autoencoder-epoch=29-train_loss=1.01.ckpt", "feature_dim": 64},
|
221 |
+
{"name": "autoencoder-epoch=49-train_loss=1.01.ckpt", "feature_dim": 64}]
|
222 |
|
223 |
+
setup(models[0])
|
224 |
|
225 |
|
226 |
with gr.Blocks() as demo:
|