Spaces:
Sleeping
Sleeping
if mian
Browse files
app.py
CHANGED
@@ -19,6 +19,12 @@ image_size = 112
|
|
19 |
batch_size = 32
|
20 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
@spaces.GPU
|
23 |
def load_model(model_path, feature_dim):
|
24 |
model = AutoencoderModule(feature_dim=feature_dim)
|
@@ -141,21 +147,6 @@ def setup(model_info, input_image=None):
|
|
141 |
fig = get_heatmaps(0, image_size // 2, image_size // 2, input_image)
|
142 |
return fig
|
143 |
|
144 |
-
|
145 |
-
models_info = [{"name": "ae_model_tf_2024-03-05_00-35-21.pth", "feature_dim": 32},
|
146 |
-
{"name": "autoencoder-epoch=09-train_loss=1.00.ckpt", "feature_dim": 64},
|
147 |
-
{"name": "autoencoder-epoch=29-train_loss=1.01.ckpt", "feature_dim": 64},
|
148 |
-
{"name": "autoencoder-epoch=49-train_loss=1.01.ckpt", "feature_dim": 64}]
|
149 |
-
models = []
|
150 |
-
for model_info in models_info:
|
151 |
-
model_name = model_info["name"]
|
152 |
-
feature_dim = model_info["feature_dim"]
|
153 |
-
model_path = f"checkpoints/{model_name}"
|
154 |
-
model = load_model(model_path, feature_dim)
|
155 |
-
models.append(model)
|
156 |
-
|
157 |
-
setup(models_info[0])
|
158 |
-
|
159 |
with gr.Blocks() as demo:
|
160 |
# title
|
161 |
gr.Markdown("# TripletGeoEncoder Feature Map Visualization")
|
@@ -204,7 +195,18 @@ with gr.Blocks() as demo:
|
|
204 |
],
|
205 |
inputs=[input_image],
|
206 |
)
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
# JavaScriptコードをロード
|
209 |
demo.launch()
|
210 |
|
|
|
19 |
batch_size = 32
|
20 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
|
22 |
+
models_info = [{"name": "ae_model_tf_2024-03-05_00-35-21.pth", "feature_dim": 32},
|
23 |
+
{"name": "autoencoder-epoch=09-train_loss=1.00.ckpt", "feature_dim": 64},
|
24 |
+
{"name": "autoencoder-epoch=29-train_loss=1.01.ckpt", "feature_dim": 64},
|
25 |
+
{"name": "autoencoder-epoch=49-train_loss=1.01.ckpt", "feature_dim": 64}]
|
26 |
+
models = []
|
27 |
+
|
28 |
@spaces.GPU
|
29 |
def load_model(model_path, feature_dim):
|
30 |
model = AutoencoderModule(feature_dim=feature_dim)
|
|
|
147 |
fig = get_heatmaps(0, image_size // 2, image_size // 2, input_image)
|
148 |
return fig
|
149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
with gr.Blocks() as demo:
|
151 |
# title
|
152 |
gr.Markdown("# TripletGeoEncoder Feature Map Visualization")
|
|
|
195 |
],
|
196 |
inputs=[input_image],
|
197 |
)
|
198 |
+
|
199 |
+
|
200 |
+
if __name__ == "__main__":
|
201 |
+
for model_info in models_info:
|
202 |
+
model_name = model_info["name"]
|
203 |
+
feature_dim = model_info["feature_dim"]
|
204 |
+
model_path = f"checkpoints/{model_name}"
|
205 |
+
model = load_model(model_path, feature_dim)
|
206 |
+
models.append(model)
|
207 |
+
|
208 |
+
setup(models_info[0])
|
209 |
+
|
210 |
# JavaScriptコードをロード
|
211 |
demo.launch()
|
212 |
|