import gradio as gr #def greet(name): # return "Hello " + name + "!!" #iface = gr.Interface(fn=greet, inputs="text", outputs="text") #iface.launch() #git clone https://github.com/huggingface/transformers.git #cd transformers #pip install #python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('we love you'))" #pip install 'transformers[torch]' #source .env/bin/activate #pipenv install git+https://github.com/huggingface/transformers #python -m pip install git+https://github.com/huggingface/transformers #source ENV/bin/activate #python -m venv .env #pip install transformers #pip install transformers #pip install -U git+https://github.com/huggingface/transformers.git #! pip install -U git+https://github.com/huggingface/accelerate.git from transformers import pipeline get_completion = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") def summarize(input): output = get_completion(input) return output[0]['summary_text'] gr.close_all() demo = gr.Interface(fn=summarize, inputs=[gr.Textbox(label="Text to summarize", lines=6)], outputs=[gr.Textbox(label="Result", lines=3)], title="Text summarization with distilbart-cnn", description="Summarize any text using the `shleifer/distilbart-cnn-12-6` model under the hood!" ) demo.launch(share=True) #demo.launch(share=True, server_port=int(os.environ['PORT2']))