File size: 8,098 Bytes
744eb4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
from collections import OrderedDict, defaultdict

import transformers
from pointllm import conversation as conversation_lib
from dataclasses import dataclass
from typing import Optional, Dict, Sequence
import torch

import numpy as np
import os

IGNORE_INDEX = -100

# * Sample Usage:
# * from utils import LRUCache
# * cache = LRUCache(capacity, max_access_count)
# if self.cache is None:
#     info_data = self.multiview_scannet[info_index]
# else:
#     info_data = self.cache.get(info_index)
#     if info_data is None or self.cache.get_access_count(info_index) >= self.cache.max_access_count:
#         # If not in cache, or accessed max_access_count times, load it and put it in cache
#         info_data = self.multiview_scannet[info_index]
#         self.cache.put(info_index, info_data)
#         self.cache.reset_access_count(info_index)

class LRUCache:
    def __init__(self, capacity, max_access_count):
        self.cache = OrderedDict()
        self.access_count = defaultdict(int)
        self.capacity = capacity
        self.max_access_count = max_access_count

    def get(self, key):
        if key not in self.cache:
            return None
        value = self.cache.pop(key)
        self.cache[key] = value  # Put key as the newest one
        self.access_count[key] += 1
        return value

    def put(self, key, value):
        if key in self.cache:  # Update the value and put it as newest
            self.cache.pop(key)
        elif len(self.cache) == self.capacity:  # If cache is full
            oldest_key = next(iter(self.cache))
            self.cache.popitem(last=False)  # Remove oldest item
            del self.access_count[oldest_key]  # Remove the corresponding access count
        self.cache[key] = value
        self.access_count[key] = 1

    def get_access_count(self, key):
        return self.access_count.get(key, 0)

    def reset_access_count(self, key):
        self.access_count[key] = 0


def preprocess_v1(
    sources,
    tokenizer: transformers.PreTrainedTokenizer,
) -> Dict:
    conv = conversation_lib.default_conversation.copy()
    roles = {"human": conv.roles[0], "gpt": conv.roles[1]}

    # Apply prompt templates
    conversations = []
    for i, source in enumerate(sources):
        if roles[source[0]["from"]] != conv.roles[0]:
            # Skip the first one if it is not from human
            source = source[1:]

        conv.messages = []
        for j, sentence in enumerate(source):
            role = roles[sentence["from"]]
            assert role == conv.roles[j % 2], f"{i}"
            conv.append_message(role, sentence["value"])
        conversations.append(conv.get_prompt())

    # Tokenize conversations
    input_ids = tokenizer(
        conversations,
        return_tensors="pt",
        padding="longest",
        max_length=tokenizer.model_max_length,
        truncation=True,
    ).input_ids
    targets = input_ids.clone()

    assert conv.sep_style == conversation_lib.SeparatorStyle.TWO

    # Mask targets
    sep = conv.sep + conv.roles[1] + ": "
    for conversation, target in zip(conversations, targets):
        total_len = int(target.ne(tokenizer.pad_token_id).sum())

        rounds = conversation.split(conv.sep2)
        cur_len = 1
        target[:cur_len] = IGNORE_INDEX
        for i, rou in enumerate(rounds):
            if rou == "":
                break

            parts = rou.split(sep)
            if len(parts) != 2: # * can handle padded tokens
                break
            parts[0] += sep
            round_len = len(tokenizer(rou).input_ids)
            instruction_len = len(tokenizer(parts[0]).input_ids) - 2

            target[cur_len : cur_len + instruction_len] = IGNORE_INDEX

            cur_len += round_len
        target[cur_len:] = IGNORE_INDEX # * this is necessary for padded tokens

        if cur_len < tokenizer.model_max_length:
            if cur_len != total_len: # * unk tokens in the dialogue will cause this.
                target[:] = IGNORE_INDEX
                print(
                    f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
                    f" (ignored)"
                )

    return dict(
        input_ids=input_ids,
        labels=targets,
    )

def preprocess_multimodal_point_cloud(
    sources: Sequence[str],
    point_backbone_config: dict,
    point_indicator: str = "<point>",
) -> Dict:
    point_token_len = point_backbone_config['point_token_len']
    default_point_patch_token = point_backbone_config['default_point_patch_token']

    for source in sources:
        for sentence in source:
            replace_token = default_point_patch_token * point_token_len 
            if point_backbone_config['mm_use_point_start_end']:
                replace_token = point_backbone_config['default_point_start_token']+ replace_token + point_backbone_config['default_point_end_token']
            sentence["value"] = sentence["value"].replace(point_indicator, replace_token)

    return sources

def pc_norm(pc):
    """ pc: NxC, return NxC """
    xyz = pc[:, :3]
    other_feature = pc[:, 3:]

    centroid = np.mean(xyz, axis=0)
    xyz = xyz - centroid
    m = np.max(np.sqrt(np.sum(xyz ** 2, axis=1)))
    xyz = xyz / m

    pc = np.concatenate((xyz, other_feature), axis=1)
    return pc

def load_objaverse_point_cloud(data_path, object_id, pointnum=8192, use_color=False):
    filename = f"{object_id}_{pointnum}.npy"
    point_cloud = np.load(os.path.join(data_path, filename))

    # * normalize
    point_cloud = pc_norm(point_cloud)

    if not use_color:
        point_cloud = point_cloud[:, :3]

    return point_cloud

@dataclass
class DataCollatorForPointTextDataset(object):
    """Collate examples for mixed dataset with text and point cloud data."""

    tokenizer: transformers.PreTrainedTokenizer

    def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
        input_ids, labels = tuple([instance[key] for instance in instances]
                                  for key in ("input_ids", "labels"))
        input_ids = torch.nn.utils.rnn.pad_sequence(
            input_ids,
            batch_first=True,
            padding_value=self.tokenizer.pad_token_id)
        labels = torch.nn.utils.rnn.pad_sequence(labels,
                                                 batch_first=True,
                                                 padding_value=IGNORE_INDEX)
        batch = dict(
            input_ids=input_ids,
            labels=labels,
            attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
        )

        if 'point_clouds' in instances[0]:
            point_clouds = [instance['point_clouds'] for instance in instances]
            if all(x is not None and x.shape == point_clouds[0].shape for x in point_clouds): # * point_clouds have different shapes
                batch['point_clouds'] = torch.stack(point_clouds)
            else:
                batch['point_clouds'] = point_clouds # * return as lists

        return batch

def farthest_point_sample(point, npoint):
    """
    Input:
        xyz: pointcloud data, [N, D]
        npoint: number of samples
    Return:
        centroids: sampled pointcloud index, [npoint, D]
    """
    N, D = point.shape
    xyz = point[:,:3]
    centroids = np.zeros((npoint,))
    distance = np.ones((N,)) * 1e10
    farthest = np.random.randint(0, N)
    for i in range(npoint):
        centroids[i] = farthest
        centroid = xyz[farthest, :]
        dist = np.sum((xyz - centroid) ** 2, -1)
        mask = dist < distance
        distance[mask] = dist[mask]
        farthest = np.argmax(distance, -1)
    point = point[centroids.astype(np.int32)]
    return point

def pc_normalize(pc):
    """
    pc: Nx3 array
    This functions normalizes a point cloud to fit within a unit sphere.
    It first calculates the centroid of the point cloud and then subtracts
    it from all points before scaling all points to fit within a unit sphere.
    """
    centroid = np.mean(pc, axis=0)
    pc = pc - centroid
    m = np.max(np.sqrt(np.sum(pc**2, axis=1)))
    pc = pc / m
    return pc