File size: 19,610 Bytes
744eb4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
#    Copyright 2023 Runsen Xu

from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from .utils import *
from ThirdParty.PointLLM.pointllm.utils import *

from contextlib import nullcontext
from transformers import AutoConfig, AutoModelForCausalLM, \
                         LlamaConfig, LlamaModel, LlamaForCausalLM

from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast

import os

# * add logger
import logging
logger = logging.getLogger(__name__)

class PointLLMConfig(LlamaConfig):
    model_type = "pointllm"

class PointLLMLlamaModel(LlamaModel):
    config_class = PointLLMConfig 

    def __init__(self, config: LlamaConfig):
        super(PointLLMLlamaModel, self).__init__(config)

        self.point_backbone_type = config.point_backbone
        logger.info(f"Using {self.point_backbone_type}.")

        if self.point_backbone_type == "PointBERT":
            from pointllm.model import PointTransformer
            # address of config file, in the same dir of this file
            point_bert_config_name = getattr(config, "point_backbone_config_name", "PointTransformer_8192point_2layer") # * default for v1.2, v1.1 uses PointTransformer_base_8192point.yaml
            point_bert_config_addr = os.path.join(os.path.dirname(__file__), "pointbert", f"{point_bert_config_name}.yaml")
            print(f"Loading PointBERT config from {point_bert_config_addr}.")
            point_bert_config = cfg_from_yaml_file(point_bert_config_addr)
            if getattr(config, "use_color", False):
                point_bert_config.model.point_dims = 6
            use_max_pool = getattr(point_bert_config.model, "use_max_pool", False) # * default is false
            
            self.point_backbone = PointTransformer(point_bert_config.model, use_max_pool=use_max_pool)
            logger.info(f"Using {self.point_backbone.point_dims} dim of points.")

            self.point_backbone_config = {
                "point_cloud_dim": point_bert_config.model.point_dims,
                "backbone_output_dim": point_bert_config.model.trans_dim if not use_max_pool else point_bert_config.model.trans_dim * 2,
                "project_output_dim": self.config.hidden_size,
                "point_token_len": point_bert_config.model.num_group + 1 if not use_max_pool else 1, # * number of output features, with cls token
                "mm_use_point_start_end": self.config.mm_use_point_start_end,
                "projection_hidden_layer": point_bert_config.model.get('projection_hidden_layer', 0),
                "use_max_pool": use_max_pool
            }
            if point_bert_config.model.get('projection_hidden_layer', 0) > 0:
                self.point_backbone_config["projection_hidden_dim"] = point_bert_config.model.projection_hidden_dim # a list
            
            logger.info(f"Use max pool is {use_max_pool}. Number of point token is {self.point_backbone_config['point_token_len']}.")

        # * print relevant info with projection layers
        backbone_output_dim = self.point_backbone_config["backbone_output_dim"]
        logger.info(f"Point backbone output dim: {backbone_output_dim}.")
        logger.info(f"Use {self.point_backbone_config['projection_hidden_layer']} projection hiddent layers.")
        if self.point_backbone_config['projection_hidden_layer'] > 0:
            # Add projection layer with linear layers and GELU activation
            projection_layers = []
            last_dim = backbone_output_dim
            for i in range(point_bert_config.model.projection_hidden_layer):
                projection_layers.append(nn.Linear(last_dim, self.point_backbone_config["projection_hidden_dim"][i]))
                projection_layers.append(nn.GELU())
                last_dim = self.point_backbone_config["projection_hidden_dim"][i]

            projection_layers.append(nn.Linear(last_dim, self.point_backbone_config["project_output_dim"]))
            self.point_proj = nn.Sequential(*projection_layers)
            logger.info(f"Each layer with {point_bert_config.model.projection_hidden_dim} hidden units.")
        else:
            # Single layer
            self.point_proj = nn.Linear(backbone_output_dim, self.point_backbone_config['project_output_dim'])
        logger.info(f"Point projector output dim: {self.point_backbone_config['project_output_dim']}.")

        self.fix_pointnet = False
        self.fix_llm = False

    def load_point_backbone_checkpoint(self, checkpoint_path=None):
        self.point_backbone.load_checkpoint(self.config.point_backbone_ckpt if checkpoint_path is None else checkpoint_path)

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        point_clouds: Optional[torch.FloatTensor] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:

        # HACK: replace back original embeddings for pretraining
        orig_embeds_params = getattr(self, 'orig_embeds_params', None)

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        point_backbone = getattr(self, 'point_backbone', None)
        point_backbone_config = getattr(self, 'point_backbone_config', None)

        if point_backbone is not None and (input_ids.shape[1] != 1 or self.training) and point_clouds is not None:
            # * enter when training or the first generation step of inference
            with torch.no_grad() if self.fix_pointnet else nullcontext():
                if self.fix_pointnet:
                    self.point_backbone.eval()
                if type(point_clouds) is list:
                    # * variable numbers of points
                    point_features = []
                    for point_cloud in point_clouds: # * iterate over batch
                        point_feature = self.point_backbone(point_cloud.unsqueeze(0))[0]
                        point_features.append(point_feature)
                else:
                    point_features = self.point_backbone(point_clouds)

            if type(point_clouds) is list:
                point_features = [self.point_proj(point_feature) for point_feature in point_features]
            else:
                point_features = self.point_proj(point_features)

            dummy_point_features = torch.zeros(point_backbone_config['point_token_len'], point_backbone_config['backbone_output_dim'], device=inputs_embeds.device, dtype=inputs_embeds.dtype)
            dummy_point_features = self.point_proj(dummy_point_features)

            new_input_embeds = []
            cur_point_idx = 0
            for cur_input_ids, cur_input_embeds in zip(input_ids, inputs_embeds): # * input_ids: B, L; input_embeds: B, L, C
                if (cur_input_ids == point_backbone_config['point_patch_token']).sum() == 0:
                    # multimodal LLM, but the current sample is not multimodal
                    cur_input_embeds = cur_input_embeds + (0. * dummy_point_features).sum() # * do nothing
                    new_input_embeds.append(cur_input_embeds)
                    cur_point_idx += 1
                    continue
                cur_point_features = point_features[cur_point_idx].to(device=cur_input_embeds.device)
                num_patches = cur_point_features.shape[0] # * number of point tokens
                if point_backbone_config['mm_use_point_start_end']:
                    if (cur_input_ids == point_backbone_config["point_start_token"]).sum() != (cur_input_ids == point_backbone_config["point_end_token"]).sum():
                        raise ValueError("The number of point start tokens and point end tokens should be the same.")
                    point_start_tokens = torch.where(cur_input_ids == point_backbone_config["point_start_token"])[0]
                    for point_start_token_pos in point_start_tokens:
                        if cur_input_ids[point_start_token_pos + num_patches + 1] != point_backbone_config["point_end_token"]:
                            raise ValueError("The point end token should follow the point start token.")
                        if orig_embeds_params is not None: # * will not update the original embeddings except for POINT_START_TOKEN and POINT_END_TOKEN
                            cur_new_input_embeds = torch.cat((cur_input_embeds[:point_start_token_pos].detach(), cur_input_embeds[point_start_token_pos:point_start_token_pos+1], cur_point_features, cur_input_embeds[point_start_token_pos + num_patches + 1:point_start_token_pos + num_patches + 2], cur_input_embeds[point_start_token_pos + num_patches + 2:].detach()), dim=0)
                        else:
                            cur_new_input_embeds = torch.cat((cur_input_embeds[:point_start_token_pos+1], cur_point_features, cur_input_embeds[point_start_token_pos + num_patches + 1:]), dim=0)
                        cur_point_idx += 1
                    new_input_embeds.append(cur_new_input_embeds)
                else:
                    if (cur_input_ids == point_backbone_config["point_patch_token"]).sum() != num_patches:
                        raise ValueError("The number of point patch tokens should be the same as the number of point patches.")
                    masked_indices = torch.where(cur_input_ids == point_backbone_config["point_patch_token"])[0]
                    mask_index_start = masked_indices[0]
                    if (masked_indices != torch.arange(mask_index_start, mask_index_start+num_patches, device=masked_indices.device, dtype=masked_indices.dtype)).any():
                        raise ValueError("The point patch tokens should be consecutive.")
                    if orig_embeds_params is not None:
                        cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start].detach(), cur_point_features, cur_input_embeds[mask_index_start+num_patches:].detach()), dim=0)
                    else:
                        cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start], cur_point_features, cur_input_embeds[mask_index_start+num_patches:]), dim=0)
                    new_input_embeds.append(cur_new_input_embeds)
                    cur_point_idx += 1
            inputs_embeds = torch.stack(new_input_embeds, dim=0)

        return super(PointLLMLlamaModel, self).forward(
            input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values,
            inputs_embeds=inputs_embeds, use_cache=use_cache,
            output_attentions=output_attentions, output_hidden_states=output_hidden_states,
            return_dict=return_dict
        )


class PointLLMLlamaForCausalLM(LlamaForCausalLM):
    config_class = PointLLMConfig

    def __init__(self, config):
        super(LlamaForCausalLM, self).__init__(config)
        self.model = PointLLMLlamaModel(config)

        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_model(self):
        return self.model

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None, # * control whether to return past_key_values
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        point_clouds: Optional[torch.FloatTensor] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            point_clouds=point_clouds
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous() # * B, L, V(32003)
            shift_labels = labels[..., 1:].contiguous() # * B, L
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model/pipeline parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
    ):
        if past_key_values:
            input_ids = input_ids[:, -1:]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
                "point_clouds": kwargs.get("point_clouds", None),
            }
        )
        return model_inputs

    def initialize_tokenizer_point_backbone_config_wo_embedding(self, tokenizer):
        # * called when stage2 or inference or inference without pre-training, assume tokenizer has point tokens
        config = self.config
        point_backbone_config = self.get_model().point_backbone_config
        mm_use_point_start_end = point_backbone_config['mm_use_point_start_end'] = config.mm_use_point_start_end

        default_point_patch_token = config.DEFAULT_POINT_PATCH_TOKEN

        tokenizer.add_tokens([default_point_patch_token], special_tokens=True)

        # * assert tokenizer has the default_point_patch_token
        point_backbone_config['default_point_patch_token'] = default_point_patch_token
        point_backbone_config['point_patch_token'] = tokenizer.convert_tokens_to_ids([default_point_patch_token])[0]

        if mm_use_point_start_end:
            default_point_start_token = config.DEFAULT_POINT_START_TOKEN
            default_point_end_token = config.DEFAULT_POINT_END_TOKEN
            tokenizer.add_tokens([default_point_start_token, default_point_end_token], special_tokens=True)

            point_backbone_config['default_point_start_token'] = default_point_start_token
            point_backbone_config['default_point_end_token'] = default_point_end_token

            point_backbone_config["point_start_token"] = tokenizer.convert_tokens_to_ids([default_point_start_token])[0]
            point_backbone_config["point_end_token"] = tokenizer.convert_tokens_to_ids([default_point_end_token])[0]
    
    def initialize_tokenizer_point_backbone_config(self, tokenizer, device, fix_llm=True):

        config = self.config
        point_backbone_config = self.get_model().point_backbone_config
        mm_use_point_start_end = point_backbone_config['mm_use_point_start_end'] = config.mm_use_point_start_end

        default_point_patch_token = config.DEFAULT_POINT_PATCH_TOKEN
        point_backbone_config['default_point_patch_token'] = default_point_patch_token
        tokenizer.add_tokens([default_point_patch_token], special_tokens=True) # * no need to update embed since it will be replaced
        self.resize_token_embeddings(len(tokenizer)) # ! resize_token_embeddings will make the tokens trainable again
        point_backbone_config['point_patch_token'] = tokenizer.convert_tokens_to_ids([default_point_patch_token])[0]

        if mm_use_point_start_end:
            default_point_start_token = config.DEFAULT_POINT_START_TOKEN
            default_point_end_token = config.DEFAULT_POINT_END_TOKEN
            point_backbone_config['default_point_start_token'] = default_point_start_token
            point_backbone_config['default_point_end_token'] = default_point_end_token

            num_new_tokens = tokenizer.add_tokens([default_point_start_token, default_point_end_token], special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))
            point_backbone_config["point_start_token"] = tokenizer.convert_tokens_to_ids([default_point_start_token])[0]
            point_backbone_config["point_end_token"] = tokenizer.convert_tokens_to_ids([default_point_end_token])[0]

            if num_new_tokens > 0:
                input_embeddings = self.get_input_embeddings().weight.data
                output_embeddings = self.get_output_embeddings().weight.data

                input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
                    dim=0, keepdim=True)
                output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
                    dim=0, keepdim=True)

                input_embeddings[-num_new_tokens:] = input_embeddings_avg
                output_embeddings[-num_new_tokens:] = output_embeddings_avg

                # need to update the input embeding, but no need to update the output embedding
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = True
                if fix_llm:
                    self.get_model().orig_embeds_params = [self.get_input_embeddings().weight.data.clone().to(device=device)] # * only tuning the new embeddings
                    for p in self.get_output_embeddings().parameters(): # * the llm head
                        p.requires_grad = False
                    print(f"Setting output embeddings fixed and {num_new_tokens} new tokens' input embeddings trainable.")
                else:
                    self.get_model().orig_embeds_params = None
                    for p in self.get_output_embeddings().parameters():
                        p.requires_grad = True
                    print("Setting output embeddings and all input embeddings trainable.")

AutoConfig.register("pointllm", PointLLMConfig)
AutoModelForCausalLM.register(PointLLMConfig, PointLLMLlamaForCausalLM)