File size: 10,271 Bytes
744eb4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
#-------------------------------------------------------------------------------
# Name: rig_parser.py
# Purpose: classes for skeleton and rig
# RigNet Copyright 2020 University of Massachusetts
# RigNet is made available under General Public License Version 3 (GPLv3), or under a Commercial License.
# Please see the LICENSE README.txt file in the main directory for more information and instruction on using and licensing RigNet.
#-------------------------------------------------------------------------------
import numpy as np
try:
import Queue as Q # ver. < 3.0
except ImportError:
import queue as Q
class Node(object):
def __init__(self, name, pos):
self.name = name
self.pos = pos
class TreeNode(Node):
def __init__(self, name, pos):
super(TreeNode, self).__init__(name, pos)
self.children = []
self.parent = None
class Info:
"""
Wrap class for rig information
"""
def __init__(self, filename=None):
self.joint_pos = {}
self.joint_skin = []
self.root = None
if filename is not None:
self.load(filename)
def load(self, filename):
with open(filename, 'r') as f_txt:
lines = f_txt.readlines()
for line in lines:
word = line.split()
if word[0] == 'joints':
self.joint_pos[word[1]] = [float(word[2]), float(word[3]), float(word[4])]
elif word[0] == 'root':
root_pos = self.joint_pos[word[1]]
self.root = TreeNode(word[1], (root_pos[0], root_pos[1], root_pos[2]))
elif word[0] == 'skin':
skin_item = word[1:]
self.joint_skin.append(skin_item)
self.loadHierarchy_recur(self.root, lines, self.joint_pos)
def loadHierarchy_recur(self, node, lines, joint_pos):
for li in lines:
if li.split()[0] == 'hier' and li.split()[1] == node.name:
pos = joint_pos[li.split()[2]]
ch_node = TreeNode(li.split()[2], tuple(pos))
node.children.append(ch_node)
ch_node.parent = node
self.loadHierarchy_recur(ch_node, lines, joint_pos)
def save(self, filename):
with open(filename, 'w') as file_info:
for key, val in self.joint_pos.items():
file_info.write(
'joints {0} {1:.8f} {2:.8f} {3:.8f}\n'.format(key, val[0], val[1], val[2]))
file_info.write('root {}\n'.format(self.root.name))
for skw in self.joint_skin:
cur_line = 'skin {0} '.format(skw[0])
for cur_j in range(1, len(skw), 2):
cur_line += '{0} {1:.4f} '.format(skw[cur_j], float(skw[cur_j+1]))
cur_line += '\n'
file_info.write(cur_line)
this_level = self.root.children
while this_level:
next_level = []
for p_node in this_level:
file_info.write('hier {0} {1}\n'.format(p_node.parent.name, p_node.name))
next_level += p_node.children
this_level = next_level
# return a numpy array skin_relation, where skin_relation[i, j] = 1 if joint i is skinned to joint j
def get_skin_dict(self, filename):
skinning_dict = {}
with open (filename, 'r') as f:
lines = f.readlines()
skin_lines = [line for line in lines if line.startswith('skin')]
vertex_num = len(skin_lines)
for line in skin_lines:
word = line.split()
word = word[1:]
skin_vertex = {}
for i in range(1,len(word),2):
skin_vertex[word[i]] = float(word[i+1])
skinning_dict[word[0]] = skin_vertex
return skinning_dict,vertex_num
def save_as_skel_format(self, filename):
fout = open(filename, 'w')
this_level = [self.root]
hier_level = 1
while this_level:
next_level = []
for p_node in this_level:
pos = p_node.pos
parent = p_node.parent.name if p_node.parent is not None else 'None'
line = '{0} {1} {2:8f} {3:8f} {4:8f} {5}\n'.format(hier_level, p_node.name, pos[0], pos[1], pos[2],
parent)
fout.write(line)
for c_node in p_node.children:
next_level.append(c_node)
this_level = next_level
hier_level += 1
fout.close()
def normalize(self, scale, trans):
for k, v in self.joint_pos.items():
self.joint_pos[k] /= scale
self.joint_pos[k] -= trans
this_level = [self.root]
while this_level:
next_level = []
for node in this_level:
node.pos /= scale
node.pos = (node.pos[0] - trans[0], node.pos[1] - trans[1], node.pos[2] - trans[2])
for ch in node.children:
next_level.append(ch)
this_level = next_level
def get_joint_dict(self):
joint_dict = {}
this_level = [self.root]
while this_level:
next_level = []
for node in this_level:
joint_dict[node.name] = node.pos
next_level += node.children
this_level = next_level
return joint_dict
def adjacent_matrix(self):
joint_pos = self.get_joint_dict()
joint_name_list = list(joint_pos.keys())
num_joint = len(joint_pos)
adj_matrix = np.zeros((num_joint, num_joint))
this_level = [self.root]
while this_level:
next_level = []
for p_node in this_level:
for c_node in p_node.children:
index_parent = joint_name_list.index(p_node.name)
index_children = joint_name_list.index(c_node.name)
adj_matrix[index_parent, index_children] = 1.
next_level += p_node.children
this_level = next_level
adj_matrix = adj_matrix + adj_matrix.transpose()
return adj_matrix
class Skel:
"""
Wrap class for skeleton topology
"""
def __init__(self, filename=None):
self.root = None
if filename is not None:
self.load(filename)
def load(self, filename):
with open(filename, 'r') as fin:
lines = fin.readlines()
for li in lines:
words = li.split()
if words[5] == "None":
self.root = TreeNode(words[1], (float(words[2]), float(words[3]), float(words[4])))
if len(words) == 7:
has_order = True
self.root.order = int(words[6])
else:
has_order = False
break
self.loadSkel_recur(self.root, lines, has_order)
def loadSkel_recur(self, node, lines, has_order):
if has_order:
ch_queue = Q.PriorityQueue()
for li in lines:
words = li.split()
if words[5] == node.name:
ch_queue.put((int(li.split()[6]), li))
while not ch_queue.empty():
item = ch_queue.get()
li = item[1]
ch_node = TreeNode(li.split()[1], (float(li.split()[2]), float(li.split()[3]), float(li.split()[4])))
ch_node.order = int(li.split()[6])
node.children.append(ch_node)
ch_node.parent = node
self.loadSkel_recur(ch_node, lines, has_order)
else:
for li in lines:
words = li.split()
if words[5] == node.name:
ch_node = TreeNode(words[1], (float(words[2]), float(words[3]), float(words[4])))
node.children.append(ch_node)
ch_node.parent = node
self.loadSkel_recur(ch_node, lines, has_order)
def save(self, filename):
fout = open(filename, 'w')
this_level = [self.root]
hier_level = 1
while this_level:
next_level = []
for p_node in this_level:
pos = p_node.pos
parent = p_node.parent.name if p_node.parent is not None else 'None'
line = '{0} {1} {2:8f} {3:8f} {4:8f} {5}\n'.format(hier_level, p_node.name, pos[0], pos[1], pos[2], parent)
fout.write(line)
for c_node in p_node.children:
next_level.append(c_node)
this_level = next_level
hier_level += 1
fout.close()
def normalize(self, scale, trans):
this_level = [self.root]
while this_level:
next_level = []
for node in this_level:
node.pos /= scale
node.pos = (node.pos[0] - trans[0], node.pos[1] - trans[1], node.pos[2] - trans[2])
for ch in node.children:
next_level.append(ch)
this_level = next_level
def get_joint_pos(self):
joint_pos = {}
this_level = [self.root]
while this_level:
next_level = []
for node in this_level:
joint_pos[node.name] = node.pos
next_level += node.children
this_level = next_level
return joint_pos
def adjacent_matrix(self):
joint_pos = self.get_joint_pos()
joint_name_list = list(joint_pos.keys())
num_joint = len(joint_pos)
adj_matrix = np.zeros((num_joint, num_joint))
this_level = [self.root]
while this_level:
next_level = []
for p_node in this_level:
for c_node in p_node.children:
index_parent = joint_name_list.index(p_node.name)
index_children = joint_name_list.index(c_node.name)
adj_matrix[index_parent, index_children] = 1.
next_level += p_node.children
this_level = next_level
adj_matrix = adj_matrix + adj_matrix.transpose()
return adj_matrix
|