File size: 10,271 Bytes
744eb4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#-------------------------------------------------------------------------------
# Name:        rig_parser.py
# Purpose:     classes for skeleton and rig
# RigNet Copyright 2020 University of Massachusetts
# RigNet is made available under General Public License Version 3 (GPLv3), or under a Commercial License.
# Please see the LICENSE README.txt file in the main directory for more information and instruction on using and licensing RigNet.
#-------------------------------------------------------------------------------

import numpy as np

try:
    import Queue as Q  # ver. < 3.0
except ImportError:
    import queue as Q

class Node(object):
    def __init__(self, name, pos):
        self.name = name
        self.pos = pos


class TreeNode(Node):
    def __init__(self, name, pos):
        super(TreeNode, self).__init__(name, pos)
        self.children = []
        self.parent = None

class Info:
    """
    Wrap class for rig information
    """
    def __init__(self, filename=None):
        self.joint_pos = {}
        self.joint_skin = []
        self.root = None
        if filename is not None:
            self.load(filename)

    def load(self, filename):
        with open(filename, 'r') as f_txt:
            lines = f_txt.readlines()
        for line in lines:
            word = line.split()
            if word[0] == 'joints':
                self.joint_pos[word[1]] = [float(word[2]), float(word[3]), float(word[4])]
            elif word[0] == 'root':
                root_pos = self.joint_pos[word[1]]
                self.root = TreeNode(word[1], (root_pos[0], root_pos[1], root_pos[2]))
            elif word[0] == 'skin':
                skin_item = word[1:]
                self.joint_skin.append(skin_item)
        self.loadHierarchy_recur(self.root, lines, self.joint_pos)

    def loadHierarchy_recur(self, node, lines, joint_pos):
        for li in lines:
            if li.split()[0] == 'hier' and li.split()[1] == node.name:
                pos = joint_pos[li.split()[2]]
                ch_node = TreeNode(li.split()[2], tuple(pos))
                node.children.append(ch_node)
                ch_node.parent = node
                self.loadHierarchy_recur(ch_node, lines, joint_pos)

    def save(self, filename):
        with open(filename, 'w') as file_info:
            for key, val in self.joint_pos.items():
                file_info.write(
                    'joints {0} {1:.8f} {2:.8f} {3:.8f}\n'.format(key, val[0], val[1], val[2]))
            file_info.write('root {}\n'.format(self.root.name))

            for skw in self.joint_skin:
                cur_line = 'skin {0} '.format(skw[0])
                for cur_j in range(1, len(skw), 2):
                    cur_line += '{0} {1:.4f} '.format(skw[cur_j], float(skw[cur_j+1]))
                cur_line += '\n'
                file_info.write(cur_line)

            this_level = self.root.children
            while this_level:
                next_level = []
                for p_node in this_level:
                    file_info.write('hier {0} {1}\n'.format(p_node.parent.name, p_node.name))
                    next_level += p_node.children
                this_level = next_level
        # return a numpy array skin_relation, where skin_relation[i, j] = 1 if joint i is skinned to joint j
        
    def get_skin_dict(self, filename):
        skinning_dict = {}
        with open (filename, 'r') as f:
            lines = f.readlines()
        skin_lines = [line for line in lines if line.startswith('skin')]
        vertex_num = len(skin_lines)
        for line in skin_lines:
            word = line.split()
            word = word[1:]
            skin_vertex = {}
            for i in range(1,len(word),2):
                skin_vertex[word[i]] = float(word[i+1])
            skinning_dict[word[0]] = skin_vertex
        return skinning_dict,vertex_num
        
    def save_as_skel_format(self, filename):
        fout = open(filename, 'w')
        this_level = [self.root]
        hier_level = 1
        while this_level:
            next_level = []
            for p_node in this_level:
                pos = p_node.pos
                parent = p_node.parent.name if p_node.parent is not None else 'None'
                line = '{0} {1} {2:8f} {3:8f} {4:8f} {5}\n'.format(hier_level, p_node.name, pos[0], pos[1], pos[2],
                                                                   parent)
                fout.write(line)
                for c_node in p_node.children:
                    next_level.append(c_node)
            this_level = next_level
            hier_level += 1
        fout.close()
    
    def normalize(self, scale, trans):
        for k, v in self.joint_pos.items():
            self.joint_pos[k] /= scale
            self.joint_pos[k] -= trans


        this_level = [self.root]
        while this_level:
            next_level = []
            for node in this_level:
                node.pos /= scale
                node.pos = (node.pos[0] - trans[0], node.pos[1] - trans[1], node.pos[2] - trans[2])
                for ch in node.children:
                    next_level.append(ch)
            this_level = next_level

    def get_joint_dict(self):
        joint_dict = {}
        this_level = [self.root]
        while this_level:
            next_level = []
            for node in this_level:
                joint_dict[node.name] = node.pos
                next_level += node.children
            this_level = next_level
        return joint_dict

    def adjacent_matrix(self):
        joint_pos = self.get_joint_dict()
        joint_name_list = list(joint_pos.keys())
        num_joint = len(joint_pos)
        adj_matrix = np.zeros((num_joint, num_joint))
        this_level = [self.root]
        while this_level:
            next_level = []
            for p_node in this_level:
                for c_node in p_node.children:
                    index_parent = joint_name_list.index(p_node.name)
                    index_children = joint_name_list.index(c_node.name)
                    adj_matrix[index_parent, index_children] = 1.
                next_level += p_node.children
            this_level = next_level
        adj_matrix = adj_matrix + adj_matrix.transpose()
        return adj_matrix


class Skel:
    """
    Wrap class for skeleton topology
    """
    def __init__(self, filename=None):
        self.root = None
        if filename is not None:
            self.load(filename)

    def load(self, filename):
        with open(filename, 'r') as fin:
            lines = fin.readlines()
        for li in lines:
            words = li.split()
            if words[5] == "None":
                self.root = TreeNode(words[1], (float(words[2]), float(words[3]), float(words[4])))
                if len(words) == 7:
                    has_order = True
                    self.root.order = int(words[6])
                else:
                    has_order = False
                break
        self.loadSkel_recur(self.root, lines, has_order)

    def loadSkel_recur(self, node, lines, has_order):
        if has_order:
            ch_queue = Q.PriorityQueue()
            for li in lines:
                words = li.split()
                if words[5] == node.name:
                    ch_queue.put((int(li.split()[6]), li))
            while not ch_queue.empty():
                item = ch_queue.get()
                li = item[1]
                ch_node = TreeNode(li.split()[1], (float(li.split()[2]), float(li.split()[3]), float(li.split()[4])))
                ch_node.order = int(li.split()[6])
                node.children.append(ch_node)
                ch_node.parent = node
                self.loadSkel_recur(ch_node, lines, has_order)
        else:
            for li in lines:
                words = li.split()
                if words[5] == node.name:
                    ch_node = TreeNode(words[1], (float(words[2]), float(words[3]), float(words[4])))
                    node.children.append(ch_node)
                    ch_node.parent = node
                    self.loadSkel_recur(ch_node, lines, has_order)

    def save(self, filename):
        fout = open(filename, 'w')
        this_level = [self.root]
        hier_level = 1
        while this_level:
            next_level = []
            for p_node in this_level:
                pos = p_node.pos
                parent = p_node.parent.name if p_node.parent is not None else 'None'
                line = '{0} {1} {2:8f} {3:8f} {4:8f} {5}\n'.format(hier_level, p_node.name, pos[0], pos[1], pos[2], parent)
                fout.write(line)
                for c_node in p_node.children:
                    next_level.append(c_node)
            this_level = next_level
            hier_level += 1
        fout.close()

    def normalize(self, scale, trans):
        this_level = [self.root]
        while this_level:
            next_level = []
            for node in this_level:
                node.pos /= scale
                node.pos = (node.pos[0] - trans[0], node.pos[1] - trans[1], node.pos[2] - trans[2])
                for ch in node.children:
                    next_level.append(ch)
            this_level = next_level

    def get_joint_pos(self):
        joint_pos = {}
        this_level = [self.root]
        while this_level:
            next_level = []
            for node in this_level:
                joint_pos[node.name] = node.pos
                next_level += node.children
            this_level = next_level
        return joint_pos

    def adjacent_matrix(self):
        joint_pos = self.get_joint_pos()
        joint_name_list = list(joint_pos.keys())
        num_joint = len(joint_pos)
        adj_matrix = np.zeros((num_joint, num_joint))
        this_level = [self.root]
        while this_level:
            next_level = []
            for p_node in this_level:
                for c_node in p_node.children:
                    index_parent = joint_name_list.index(p_node.name)
                    index_children = joint_name_list.index(c_node.name)
                    adj_matrix[index_parent, index_children] = 1.
                next_level += p_node.children
            this_level = next_level
        adj_matrix = adj_matrix + adj_matrix.transpose()
        return adj_matrix