File size: 18,689 Bytes
744eb4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.

"""Loss functions."""

import numpy as np
import torch
from torch_utils import training_stats
from torch_utils.ops import conv2d_gradfix
from torch_utils.ops import upfirdn2d
from training.dual_discriminator import filtered_resizing

#----------------------------------------------------------------------------

class Loss:
    def accumulate_gradients(self, phase, real_img, real_c, gen_z, gen_c, gain, cur_nimg): # to be overridden by subclass
        raise NotImplementedError()

#----------------------------------------------------------------------------

class StyleGAN2Loss(Loss):
    def __init__(self, device, G, D, augment_pipe=None, r1_gamma=10, style_mixing_prob=0, pl_weight=0, pl_batch_shrink=2, pl_decay=0.01, pl_no_weight_grad=False, blur_init_sigma=0, blur_fade_kimg=0, r1_gamma_init=0, r1_gamma_fade_kimg=0, neural_rendering_resolution_initial=64, neural_rendering_resolution_final=None, neural_rendering_resolution_fade_kimg=0, gpc_reg_fade_kimg=1000, gpc_reg_prob=None, dual_discrimination=False, filter_mode='antialiased'):
        super().__init__()
        self.device             = device
        self.G                  = G
        self.D                  = D
        self.augment_pipe       = augment_pipe
        self.r1_gamma           = r1_gamma
        self.style_mixing_prob  = style_mixing_prob
        self.pl_weight          = pl_weight
        self.pl_batch_shrink    = pl_batch_shrink
        self.pl_decay           = pl_decay
        self.pl_no_weight_grad  = pl_no_weight_grad
        self.pl_mean            = torch.zeros([], device=device)
        self.blur_init_sigma    = blur_init_sigma
        self.blur_fade_kimg     = blur_fade_kimg
        self.r1_gamma_init      = r1_gamma_init
        self.r1_gamma_fade_kimg = r1_gamma_fade_kimg
        self.neural_rendering_resolution_initial = neural_rendering_resolution_initial
        self.neural_rendering_resolution_final = neural_rendering_resolution_final
        self.neural_rendering_resolution_fade_kimg = neural_rendering_resolution_fade_kimg
        self.gpc_reg_fade_kimg = gpc_reg_fade_kimg
        self.gpc_reg_prob = gpc_reg_prob
        self.dual_discrimination = dual_discrimination
        self.filter_mode = filter_mode
        self.resample_filter = upfirdn2d.setup_filter([1,3,3,1], device=device)
        self.blur_raw_target = True
        assert self.gpc_reg_prob is None or (0 <= self.gpc_reg_prob <= 1)

    def run_G(self, z, c, swapping_prob, neural_rendering_resolution, update_emas=False):
        if swapping_prob is not None:
            c_swapped = torch.roll(c.clone(), 1, 0)
            c_gen_conditioning = torch.where(torch.rand((c.shape[0], 1), device=c.device) < swapping_prob, c_swapped, c)
        else:
            c_gen_conditioning = torch.zeros_like(c)

        ws = self.G.mapping(z, c_gen_conditioning, update_emas=update_emas)
        if self.style_mixing_prob > 0:
            with torch.autograd.profiler.record_function('style_mixing'):
                cutoff = torch.empty([], dtype=torch.int64, device=ws.device).random_(1, ws.shape[1])
                cutoff = torch.where(torch.rand([], device=ws.device) < self.style_mixing_prob, cutoff, torch.full_like(cutoff, ws.shape[1]))
                ws[:, cutoff:] = self.G.mapping(torch.randn_like(z), c, update_emas=False)[:, cutoff:]
        gen_output = self.G.synthesis(ws, c, neural_rendering_resolution=neural_rendering_resolution, update_emas=update_emas)
        return gen_output, ws

    def run_D(self, img, c, blur_sigma=0, blur_sigma_raw=0, update_emas=False):
        blur_size = np.floor(blur_sigma * 3)
        if blur_size > 0:
            with torch.autograd.profiler.record_function('blur'):
                f = torch.arange(-blur_size, blur_size + 1, device=img['image'].device).div(blur_sigma).square().neg().exp2()
                img['image'] = upfirdn2d.filter2d(img['image'], f / f.sum())

        if self.augment_pipe is not None:
            augmented_pair = self.augment_pipe(torch.cat([img['image'],
                                                    torch.nn.functional.interpolate(img['image_raw'], size=img['image'].shape[2:], mode='bilinear', antialias=True)],
                                                    dim=1))
            img['image'] = augmented_pair[:, :img['image'].shape[1]]
            img['image_raw'] = torch.nn.functional.interpolate(augmented_pair[:, img['image'].shape[1]:], size=img['image_raw'].shape[2:], mode='bilinear', antialias=True)

        logits = self.D(img, c, update_emas=update_emas)
        return logits

    def accumulate_gradients(self, phase, real_img, real_c, gen_z, gen_c, gain, cur_nimg):
        assert phase in ['Gmain', 'Greg', 'Gboth', 'Dmain', 'Dreg', 'Dboth']
        if self.G.rendering_kwargs.get('density_reg', 0) == 0:
            phase = {'Greg': 'none', 'Gboth': 'Gmain'}.get(phase, phase)
        if self.r1_gamma == 0:
            phase = {'Dreg': 'none', 'Dboth': 'Dmain'}.get(phase, phase)
        blur_sigma = max(1 - cur_nimg / (self.blur_fade_kimg * 1e3), 0) * self.blur_init_sigma if self.blur_fade_kimg > 0 else 0
        r1_gamma = self.r1_gamma

        alpha = min(cur_nimg / (self.gpc_reg_fade_kimg * 1e3), 1) if self.gpc_reg_fade_kimg > 0 else 1
        swapping_prob = (1 - alpha) * 1 + alpha * self.gpc_reg_prob if self.gpc_reg_prob is not None else None

        if self.neural_rendering_resolution_final is not None:
            alpha = min(cur_nimg / (self.neural_rendering_resolution_fade_kimg * 1e3), 1)
            neural_rendering_resolution = int(np.rint(self.neural_rendering_resolution_initial * (1 - alpha) + self.neural_rendering_resolution_final * alpha))
        else:
            neural_rendering_resolution = self.neural_rendering_resolution_initial

        real_img_raw = filtered_resizing(real_img, size=neural_rendering_resolution, f=self.resample_filter, filter_mode=self.filter_mode)

        if self.blur_raw_target:
            blur_size = np.floor(blur_sigma * 3)
            if blur_size > 0:
                f = torch.arange(-blur_size, blur_size + 1, device=real_img_raw.device).div(blur_sigma).square().neg().exp2()
                real_img_raw = upfirdn2d.filter2d(real_img_raw, f / f.sum())

        real_img = {'image': real_img, 'image_raw': real_img_raw}

        # Gmain: Maximize logits for generated images.
        if phase in ['Gmain', 'Gboth']:
            with torch.autograd.profiler.record_function('Gmain_forward'):
                gen_img, _gen_ws = self.run_G(gen_z, gen_c, swapping_prob=swapping_prob, neural_rendering_resolution=neural_rendering_resolution)
                gen_logits = self.run_D(gen_img, gen_c, blur_sigma=blur_sigma)
                training_stats.report('Loss/scores/fake', gen_logits)
                training_stats.report('Loss/signs/fake', gen_logits.sign())
                loss_Gmain = torch.nn.functional.softplus(-gen_logits)
                training_stats.report('Loss/G/loss', loss_Gmain)
            with torch.autograd.profiler.record_function('Gmain_backward'):
                loss_Gmain.mean().mul(gain).backward()

        # Density Regularization
        if phase in ['Greg', 'Gboth'] and self.G.rendering_kwargs.get('density_reg', 0) > 0 and self.G.rendering_kwargs['reg_type'] == 'l1':
            if swapping_prob is not None:
                c_swapped = torch.roll(gen_c.clone(), 1, 0)
                c_gen_conditioning = torch.where(torch.rand([], device=gen_c.device) < swapping_prob, c_swapped, gen_c)
            else:
                c_gen_conditioning = torch.zeros_like(gen_c)

            ws = self.G.mapping(gen_z, c_gen_conditioning, update_emas=False)
            if self.style_mixing_prob > 0:
                with torch.autograd.profiler.record_function('style_mixing'):
                    cutoff = torch.empty([], dtype=torch.int64, device=ws.device).random_(1, ws.shape[1])
                    cutoff = torch.where(torch.rand([], device=ws.device) < self.style_mixing_prob, cutoff, torch.full_like(cutoff, ws.shape[1]))
                    ws[:, cutoff:] = self.G.mapping(torch.randn_like(z), c, update_emas=False)[:, cutoff:]
            initial_coordinates = torch.rand((ws.shape[0], 1000, 3), device=ws.device) * 2 - 1
            perturbed_coordinates = initial_coordinates + torch.randn_like(initial_coordinates) * self.G.rendering_kwargs['density_reg_p_dist']
            all_coordinates = torch.cat([initial_coordinates, perturbed_coordinates], dim=1)
            sigma = self.G.sample_mixed(all_coordinates, torch.randn_like(all_coordinates), ws, update_emas=False)['sigma']
            sigma_initial = sigma[:, :sigma.shape[1]//2]
            sigma_perturbed = sigma[:, sigma.shape[1]//2:]

            TVloss = torch.nn.functional.l1_loss(sigma_initial, sigma_perturbed) * self.G.rendering_kwargs['density_reg']
            TVloss.mul(gain).backward()

        # Alternative density regularization
        if phase in ['Greg', 'Gboth'] and self.G.rendering_kwargs.get('density_reg', 0) > 0 and self.G.rendering_kwargs['reg_type'] == 'monotonic-detach':
            if swapping_prob is not None:
                c_swapped = torch.roll(gen_c.clone(), 1, 0)
                c_gen_conditioning = torch.where(torch.rand([], device=gen_c.device) < swapping_prob, c_swapped, gen_c)
            else:
                c_gen_conditioning = torch.zeros_like(gen_c)

            ws = self.G.mapping(gen_z, c_gen_conditioning, update_emas=False)

            initial_coordinates = torch.rand((ws.shape[0], 2000, 3), device=ws.device) * 2 - 1 # Front

            perturbed_coordinates = initial_coordinates + torch.tensor([0, 0, -1], device=ws.device) * (1/256) * self.G.rendering_kwargs['box_warp'] # Behind
            all_coordinates = torch.cat([initial_coordinates, perturbed_coordinates], dim=1)
            sigma = self.G.sample_mixed(all_coordinates, torch.randn_like(all_coordinates), ws, update_emas=False)['sigma']
            sigma_initial = sigma[:, :sigma.shape[1]//2]
            sigma_perturbed = sigma[:, sigma.shape[1]//2:]

            monotonic_loss = torch.relu(sigma_initial.detach() - sigma_perturbed).mean() * 10
            monotonic_loss.mul(gain).backward()


            if swapping_prob is not None:
                c_swapped = torch.roll(gen_c.clone(), 1, 0)
                c_gen_conditioning = torch.where(torch.rand([], device=gen_c.device) < swapping_prob, c_swapped, gen_c)
            else:
                c_gen_conditioning = torch.zeros_like(gen_c)

            ws = self.G.mapping(gen_z, c_gen_conditioning, update_emas=False)
            if self.style_mixing_prob > 0:
                with torch.autograd.profiler.record_function('style_mixing'):
                    cutoff = torch.empty([], dtype=torch.int64, device=ws.device).random_(1, ws.shape[1])
                    cutoff = torch.where(torch.rand([], device=ws.device) < self.style_mixing_prob, cutoff, torch.full_like(cutoff, ws.shape[1]))
                    ws[:, cutoff:] = self.G.mapping(torch.randn_like(z), c, update_emas=False)[:, cutoff:]
            initial_coordinates = torch.rand((ws.shape[0], 1000, 3), device=ws.device) * 2 - 1
            perturbed_coordinates = initial_coordinates + torch.randn_like(initial_coordinates) * (1/256) * self.G.rendering_kwargs['box_warp']
            all_coordinates = torch.cat([initial_coordinates, perturbed_coordinates], dim=1)
            sigma = self.G.sample_mixed(all_coordinates, torch.randn_like(all_coordinates), ws, update_emas=False)['sigma']
            sigma_initial = sigma[:, :sigma.shape[1]//2]
            sigma_perturbed = sigma[:, sigma.shape[1]//2:]

            TVloss = torch.nn.functional.l1_loss(sigma_initial, sigma_perturbed) * self.G.rendering_kwargs['density_reg']
            TVloss.mul(gain).backward()

        # Alternative density regularization
        if phase in ['Greg', 'Gboth'] and self.G.rendering_kwargs.get('density_reg', 0) > 0 and self.G.rendering_kwargs['reg_type'] == 'monotonic-fixed':
            if swapping_prob is not None:
                c_swapped = torch.roll(gen_c.clone(), 1, 0)
                c_gen_conditioning = torch.where(torch.rand([], device=gen_c.device) < swapping_prob, c_swapped, gen_c)
            else:
                c_gen_conditioning = torch.zeros_like(gen_c)

            ws = self.G.mapping(gen_z, c_gen_conditioning, update_emas=False)

            initial_coordinates = torch.rand((ws.shape[0], 2000, 3), device=ws.device) * 2 - 1 # Front

            perturbed_coordinates = initial_coordinates + torch.tensor([0, 0, -1], device=ws.device) * (1/256) * self.G.rendering_kwargs['box_warp'] # Behind
            all_coordinates = torch.cat([initial_coordinates, perturbed_coordinates], dim=1)
            sigma = self.G.sample_mixed(all_coordinates, torch.randn_like(all_coordinates), ws, update_emas=False)['sigma']
            sigma_initial = sigma[:, :sigma.shape[1]//2]
            sigma_perturbed = sigma[:, sigma.shape[1]//2:]

            monotonic_loss = torch.relu(sigma_initial - sigma_perturbed).mean() * 10
            monotonic_loss.mul(gain).backward()


            if swapping_prob is not None:
                c_swapped = torch.roll(gen_c.clone(), 1, 0)
                c_gen_conditioning = torch.where(torch.rand([], device=gen_c.device) < swapping_prob, c_swapped, gen_c)
            else:
                c_gen_conditioning = torch.zeros_like(gen_c)

            ws = self.G.mapping(gen_z, c_gen_conditioning, update_emas=False)
            if self.style_mixing_prob > 0:
                with torch.autograd.profiler.record_function('style_mixing'):
                    cutoff = torch.empty([], dtype=torch.int64, device=ws.device).random_(1, ws.shape[1])
                    cutoff = torch.where(torch.rand([], device=ws.device) < self.style_mixing_prob, cutoff, torch.full_like(cutoff, ws.shape[1]))
                    ws[:, cutoff:] = self.G.mapping(torch.randn_like(z), c, update_emas=False)[:, cutoff:]
            initial_coordinates = torch.rand((ws.shape[0], 1000, 3), device=ws.device) * 2 - 1
            perturbed_coordinates = initial_coordinates + torch.randn_like(initial_coordinates) * (1/256) * self.G.rendering_kwargs['box_warp']
            all_coordinates = torch.cat([initial_coordinates, perturbed_coordinates], dim=1)
            sigma = self.G.sample_mixed(all_coordinates, torch.randn_like(all_coordinates), ws, update_emas=False)['sigma']
            sigma_initial = sigma[:, :sigma.shape[1]//2]
            sigma_perturbed = sigma[:, sigma.shape[1]//2:]

            TVloss = torch.nn.functional.l1_loss(sigma_initial, sigma_perturbed) * self.G.rendering_kwargs['density_reg']
            TVloss.mul(gain).backward()

        # Dmain: Minimize logits for generated images.
        loss_Dgen = 0
        if phase in ['Dmain', 'Dboth']:
            with torch.autograd.profiler.record_function('Dgen_forward'):
                gen_img, _gen_ws = self.run_G(gen_z, gen_c, swapping_prob=swapping_prob, neural_rendering_resolution=neural_rendering_resolution, update_emas=True)
                gen_logits = self.run_D(gen_img, gen_c, blur_sigma=blur_sigma, update_emas=True)
                training_stats.report('Loss/scores/fake', gen_logits)
                training_stats.report('Loss/signs/fake', gen_logits.sign())
                loss_Dgen = torch.nn.functional.softplus(gen_logits)
            with torch.autograd.profiler.record_function('Dgen_backward'):
                loss_Dgen.mean().mul(gain).backward()

        # Dmain: Maximize logits for real images.
        # Dr1: Apply R1 regularization.
        if phase in ['Dmain', 'Dreg', 'Dboth']:
            name = 'Dreal' if phase == 'Dmain' else 'Dr1' if phase == 'Dreg' else 'Dreal_Dr1'
            with torch.autograd.profiler.record_function(name + '_forward'):
                real_img_tmp_image = real_img['image'].detach().requires_grad_(phase in ['Dreg', 'Dboth'])
                real_img_tmp_image_raw = real_img['image_raw'].detach().requires_grad_(phase in ['Dreg', 'Dboth'])
                real_img_tmp = {'image': real_img_tmp_image, 'image_raw': real_img_tmp_image_raw}

                real_logits = self.run_D(real_img_tmp, real_c, blur_sigma=blur_sigma)
                training_stats.report('Loss/scores/real', real_logits)
                training_stats.report('Loss/signs/real', real_logits.sign())

                loss_Dreal = 0
                if phase in ['Dmain', 'Dboth']:
                    loss_Dreal = torch.nn.functional.softplus(-real_logits)
                    training_stats.report('Loss/D/loss', loss_Dgen + loss_Dreal)

                loss_Dr1 = 0
                if phase in ['Dreg', 'Dboth']:
                    if self.dual_discrimination:
                        with torch.autograd.profiler.record_function('r1_grads'), conv2d_gradfix.no_weight_gradients():
                            r1_grads = torch.autograd.grad(outputs=[real_logits.sum()], inputs=[real_img_tmp['image'], real_img_tmp['image_raw']], create_graph=True, only_inputs=True)
                            r1_grads_image = r1_grads[0]
                            r1_grads_image_raw = r1_grads[1]
                        r1_penalty = r1_grads_image.square().sum([1,2,3]) + r1_grads_image_raw.square().sum([1,2,3])
                    else: # single discrimination
                        with torch.autograd.profiler.record_function('r1_grads'), conv2d_gradfix.no_weight_gradients():
                            r1_grads = torch.autograd.grad(outputs=[real_logits.sum()], inputs=[real_img_tmp['image']], create_graph=True, only_inputs=True)
                            r1_grads_image = r1_grads[0]
                        r1_penalty = r1_grads_image.square().sum([1,2,3])
                    loss_Dr1 = r1_penalty * (r1_gamma / 2)
                    training_stats.report('Loss/r1_penalty', r1_penalty)
                    training_stats.report('Loss/D/reg', loss_Dr1)

            with torch.autograd.profiler.record_function(name + '_backward'):
                (loss_Dreal + loss_Dr1).mean().mul(gain).backward()

#----------------------------------------------------------------------------