yfdeng's picture
init
744eb4e
raw
history blame
3.91 kB
from collections import defaultdict
import torch.nn as nn
from typing import Any
from typing import Optional, List, Dict, NamedTuple, Tuple, Iterable
from termcolor import colored
def get_missing_parameters_message(keys: List[str]) -> str:
"""
Get a logging-friendly message to report parameter names (keys) that are in
the model but not found in a checkpoint.
Args:
keys (list[str]): List of keys that were not found in the checkpoint.
Returns:
str: message.
"""
groups = _group_checkpoint_keys(keys)
msg = "Some model parameters or buffers are not found in the checkpoint:\n"
msg += "\n".join(
" " + colored(k + _group_to_str(v), "blue") for k, v in groups.items()
)
return msg
def get_unexpected_parameters_message(keys: List[str]) -> str:
"""
Get a logging-friendly message to report parameter names (keys) that are in
the checkpoint but not found in the model.
Args:
keys (list[str]): List of keys that were not found in the model.
Returns:
str: message.
"""
groups = _group_checkpoint_keys(keys)
msg = "The checkpoint state_dict contains keys that are not used by the model:\n"
msg += "\n".join(
" " + colored(k + _group_to_str(v), "magenta") for k, v in groups.items()
)
return msg
def _strip_prefix_if_present(state_dict: Dict[str, Any], prefix: str) -> None:
"""
Strip the prefix in metadata, if any.
Args:
state_dict (OrderedDict): a state-dict to be loaded to the model.
prefix (str): prefix.
"""
keys = sorted(state_dict.keys())
if not all(len(key) == 0 or key.startswith(prefix) for key in keys):
return
for key in keys:
newkey = key[len(prefix):]
state_dict[newkey] = state_dict.pop(key)
# also strip the prefix in metadata, if any..
try:
metadata = state_dict._metadata # pyre-ignore
except AttributeError:
pass
else:
for key in list(metadata.keys()):
# for the metadata dict, the key can be:
# '': for the DDP module, which we want to remove.
# 'module': for the actual model.
# 'module.xx.xx': for the rest.
if len(key) == 0:
continue
newkey = key[len(prefix):]
metadata[newkey] = metadata.pop(key)
def _group_checkpoint_keys(keys: List[str]) -> Dict[str, List[str]]:
"""
Group keys based on common prefixes. A prefix is the string up to the final
"." in each key.
Args:
keys (list[str]): list of parameter names, i.e. keys in the model
checkpoint dict.
Returns:
dict[list]: keys with common prefixes are grouped into lists.
"""
groups = defaultdict(list)
for key in keys:
pos = key.rfind(".")
if pos >= 0:
head, tail = key[:pos], [key[pos + 1:]]
else:
head, tail = key, []
groups[head].extend(tail)
return groups
def _group_to_str(group: List[str]) -> str:
"""
Format a group of parameter name suffixes into a loggable string.
Args:
group (list[str]): list of parameter name suffixes.
Returns:
str: formated string.
"""
if len(group) == 0:
return ""
if len(group) == 1:
return "." + group[0]
return ".{" + ", ".join(group) + "}"
def _named_modules_with_dup(
model: nn.Module, prefix: str = ""
) -> Iterable[Tuple[str, nn.Module]]:
"""
The same as `model.named_modules()`, except that it includes
duplicated modules that have more than one name.
"""
yield prefix, model
for name, module in model._modules.items(): # pyre-ignore
if module is None:
continue
submodule_prefix = prefix + ("." if prefix else "") + name
yield from _named_modules_with_dup(module, submodule_prefix)