yfdeng's picture
init
744eb4e
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
import torch
from torch_utils import persistence
from training.networks_stylegan2 import Generator as StyleGAN2Backbone
# from training.volumetric_rendering.renderer import ImportanceRenderer
# from training.volumetric_rendering.ray_sampler import RaySampler
import dnnlib
@persistence.persistent_class
class TriPlaneGenerator(torch.nn.Module):
def __init__(self,
z_dim, # Input latent (Z) dimensionality.
c_dim, # Conditioning label (C) dimensionality.
w_dim, # Intermediate latent (W) dimensionality.
# img_resolution, # Output resolution.
# img_channels, # Number of output color channels.
# sr_num_fp16_res = 0,
mapping_kwargs = {}, # Arguments for MappingNetwork.
# rendering_kwargs = {},
# sr_kwargs = {},
**synthesis_kwargs, # Arguments for SynthesisNetwork.
):
super().__init__()
self.z_dim=z_dim
self.c_dim=c_dim
self.w_dim=w_dim
# self.img_resolution=img_resolution
# self.img_channels=img_channels
# self.renderer = ImportanceRenderer()
# self.ray_sampler = RaySampler()
self.backbone = StyleGAN2Backbone(z_dim, c_dim, w_dim, img_resolution=256, img_channels=32*3, mapping_kwargs=mapping_kwargs, **synthesis_kwargs)
# self.superresolution = dnnlib.util.construct_class_by_name(class_name=rendering_kwargs['superresolution_module'], channels=32, img_resolution=img_resolution, sr_num_fp16_res=sr_num_fp16_res, sr_antialias=rendering_kwargs['sr_antialias'], **sr_kwargs)
self.decoder = OSGDecoder(32, {'decoder_output_dim': 0})
# self.neural_rendering_resolution = 64
# self.rendering_kwargs = rendering_kwargs
self._last_planes = None
def mapping(self, z, c=None, truncation_psi=1, truncation_cutoff=None, update_emas=False):
# if self.rendering_kwargs['c_gen_conditioning_zero']:
# c = torch.zeros_like(c)
# return self.backbone.mapping(z, c * self.rendering_kwargs.get('c_scale', 0), truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, update_emas=update_emas)
return self.backbone.mapping(z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, update_emas=update_emas)
def synthesis(self, ws, c=None, neural_rendering_resolution=None, update_emas=False, cache_backbone=False, use_cached_backbone=False, **synthesis_kwargs):
# cam2world_matrix = c[:, :16].view(-1, 4, 4)
# intrinsics = c[:, 16:25].view(-1, 3, 3)
# if neural_rendering_resolution is None:
# neural_rendering_resolution = self.neural_rendering_resolution
# else:
# self.neural_rendering_resolution = neural_rendering_resolution
# Create a batch of rays for volume rendering
# ray_origins, ray_directions = self.ray_sampler(cam2world_matrix, intrinsics, neural_rendering_resolution)
# Create triplanes by running StyleGAN backbone
# N, M, _ = ray_origins.shape
if use_cached_backbone and self._last_planes is not None:
planes = self._last_planes
else:
planes = self.backbone.synthesis(ws, update_emas=update_emas, **synthesis_kwargs)
if cache_backbone:
self._last_planes = planes
# Reshape output into three 32-channel planes
planes = planes.view(len(planes), 3, 32, planes.shape[-2], planes.shape[-1])
return planes
# Perform volume rendering
feature_samples, depth_samples, weights_samples = self.renderer(planes, self.decoder, ray_origins, ray_directions, self.rendering_kwargs) # channels last
# Reshape into 'raw' neural-rendered image
H = W = self.neural_rendering_resolution
feature_image = feature_samples.permute(0, 2, 1).reshape(N, feature_samples.shape[-1], H, W).contiguous()
depth_image = depth_samples.permute(0, 2, 1).reshape(N, 1, H, W)
# Run superresolution to get final image
rgb_image = feature_image[:, :3]
sr_image = self.superresolution(rgb_image, feature_image, ws, noise_mode=self.rendering_kwargs['superresolution_noise_mode'], **{k:synthesis_kwargs[k] for k in synthesis_kwargs.keys() if k != 'noise_mode'})
return {'image': sr_image, 'image_raw': rgb_image, 'image_depth': depth_image}
def sample(self, coordinates, directions, z, c, truncation_psi=1, truncation_cutoff=None, update_emas=False, **synthesis_kwargs):
# Compute RGB features, density for arbitrary 3D coordinates. Mostly used for extracting shapes.
ws = self.mapping(z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, update_emas=update_emas)
planes = self.backbone.synthesis(ws, update_emas=update_emas, **synthesis_kwargs)
planes = planes.view(len(planes), 3, 32, planes.shape[-2], planes.shape[-1])
return self.renderer.run_model(planes, self.decoder, coordinates, directions, self.rendering_kwargs)
def sample_mixed(self, coordinates, directions, ws, truncation_psi=1, truncation_cutoff=None, update_emas=False, **synthesis_kwargs):
# Same as sample, but expects latent vectors 'ws' instead of Gaussian noise 'z'
planes = self.backbone.synthesis(ws, update_emas = update_emas, **synthesis_kwargs)
planes = planes.view(len(planes), 3, 32, planes.shape[-2], planes.shape[-1])
return self.renderer.run_model(planes, self.decoder, coordinates, directions, self.rendering_kwargs)
def forward(self, z, c=None, truncation_psi=1, truncation_cutoff=None, neural_rendering_resolution=None, update_emas=False, cache_backbone=False, use_cached_backbone=False, **synthesis_kwargs):
# Render a batch of generated images.
ws = self.mapping(z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, update_emas=update_emas)
return self.synthesis(ws, c, update_emas=update_emas, neural_rendering_resolution=neural_rendering_resolution, cache_backbone=cache_backbone, use_cached_backbone=use_cached_backbone, **synthesis_kwargs)
from .training.networks_stylegan2 import FullyConnectedLayer
class OSGDecoder(torch.nn.Module):
def __init__(self, n_features, options):
super().__init__()
self.hidden_dim = 64
self.net = torch.nn.Sequential(
FullyConnectedLayer(n_features, self.hidden_dim),
torch.nn.Softplus(),
FullyConnectedLayer(self.hidden_dim, 1 + options['decoder_output_dim'])
)
def forward(self, sampled_features, ray_directions=None):
# Aggregate features
sampled_features = sampled_features.mean(1)
x = sampled_features
N, M, C = x.shape
x = x.view(N*M, C)
x = self.net(x)
x = x.view(N, M, -1)
return x
rgb = torch.sigmoid(x[..., 1:])*(1 + 2*0.001) - 0.001 # Uses sigmoid clamping from MipNeRF
sigma = x[..., 0:1]
return {'rgb': rgb, 'sigma': sigma}