disable diffusion to avoid hf version bug
Browse files- Anymate/model.py +15 -15
Anymate/model.py
CHANGED
@@ -4,11 +4,11 @@ from ThirdParty.michelangelo.utils.misc import get_config_from_file, instantiate
|
|
4 |
# from ThirdParty.PointLLM.pointllm.model.pointllm import PointLLMLlamaForCausalLM
|
5 |
from ThirdParty.michelangelo.models.modules.distributions import DiagonalGaussianDistribution
|
6 |
from ThirdParty.michelangelo.models.modules.embedder import components_from_spherical_harmonics
|
7 |
-
from Anymate.utils.diffusion_encoder import TransformerEncoder
|
8 |
from Anymate.models.joint import TransformerDecoder, ImplicitTransformerDecoder, TriPlaneDecoder
|
9 |
from Anymate.models.conn import AttendjointsDecoder_con_combine, AttendjointsDecoder_con_token
|
10 |
from Anymate.models.skin import AttendjointsDecoder_combine, AttendjointsDecoder_multi
|
11 |
-
from Anymate.models.diffusion import Pointe_Diffusion, Cross_Attention_Diffusion
|
12 |
|
13 |
class Encoder(nn.Module):
|
14 |
def __init__(self,
|
@@ -172,15 +172,15 @@ class EncoderDecoder(nn.Module):
|
|
172 |
synthesis_kwargs = {'num_fp16_res': 0, 'conv_clamp': None, 'fused_modconv_default': 'inference_only'}
|
173 |
)
|
174 |
|
175 |
-
elif decoder == 'Pointe_Diffusion':
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
|
180 |
-
elif decoder == 'Cross_Attention_Diffusion':
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
|
185 |
elif decoder == 'attendjoints_combine':
|
186 |
self.only_embed = False
|
@@ -294,11 +294,11 @@ class EncoderDecoder(nn.Module):
|
|
294 |
),
|
295 |
nn.Linear(513, 1, dtype=dtype)
|
296 |
])
|
297 |
-
if encoder == 'transformer':
|
298 |
-
|
299 |
-
|
300 |
-
)
|
301 |
-
|
302 |
|
303 |
|
304 |
|
|
|
4 |
# from ThirdParty.PointLLM.pointllm.model.pointllm import PointLLMLlamaForCausalLM
|
5 |
from ThirdParty.michelangelo.models.modules.distributions import DiagonalGaussianDistribution
|
6 |
from ThirdParty.michelangelo.models.modules.embedder import components_from_spherical_harmonics
|
7 |
+
# from Anymate.utils.diffusion_encoder import TransformerEncoder
|
8 |
from Anymate.models.joint import TransformerDecoder, ImplicitTransformerDecoder, TriPlaneDecoder
|
9 |
from Anymate.models.conn import AttendjointsDecoder_con_combine, AttendjointsDecoder_con_token
|
10 |
from Anymate.models.skin import AttendjointsDecoder_combine, AttendjointsDecoder_multi
|
11 |
+
# from Anymate.models.diffusion import Pointe_Diffusion, Cross_Attention_Diffusion
|
12 |
|
13 |
class Encoder(nn.Module):
|
14 |
def __init__(self,
|
|
|
172 |
synthesis_kwargs = {'num_fp16_res': 0, 'conv_clamp': None, 'fused_modconv_default': 'inference_only'}
|
173 |
)
|
174 |
|
175 |
+
# elif decoder == 'Pointe_Diffusion':
|
176 |
+
# self.only_embed = False
|
177 |
+
# self.return_latents = True
|
178 |
+
# self.decoder = Pointe_Diffusion(**kwargs)
|
179 |
|
180 |
+
# elif decoder == 'Cross_Attention_Diffusion':
|
181 |
+
# self.only_embed = False
|
182 |
+
# self.return_latents = True
|
183 |
+
# self.decoder = Cross_Attention_Diffusion(**kwargs)
|
184 |
|
185 |
elif decoder == 'attendjoints_combine':
|
186 |
self.only_embed = False
|
|
|
294 |
),
|
295 |
nn.Linear(513, 1, dtype=dtype)
|
296 |
])
|
297 |
+
# if encoder == 'transformer':
|
298 |
+
# self.points_cloud_embed = nn.Linear(
|
299 |
+
# 768, 768, device=device, dtype=dtype
|
300 |
+
# )
|
301 |
+
# self.encoder = TransformerEncoder(device=device,dtype=dtype, num_latents=kwargs['num_latents'])
|
302 |
|
303 |
|
304 |
|