# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: LicenseRef-NvidiaProprietary # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. """Generate images and shapes using pretrained network pickle.""" import os import re from typing import List, Optional, Tuple, Union import click import dnnlib import numpy as np import PIL.Image import torch from tqdm import tqdm import mrcfile import legacy from camera_utils import LookAtPoseSampler, FOV_to_intrinsics from torch_utils import misc from training.triplane import TriPlaneGenerator #---------------------------------------------------------------------------- def parse_range(s: Union[str, List]) -> List[int]: '''Parse a comma separated list of numbers or ranges and return a list of ints. Example: '1,2,5-10' returns [1, 2, 5, 6, 7] ''' if isinstance(s, list): return s ranges = [] range_re = re.compile(r'^(\d+)-(\d+)$') for p in s.split(','): if m := range_re.match(p): ranges.extend(range(int(m.group(1)), int(m.group(2))+1)) else: ranges.append(int(p)) return ranges #---------------------------------------------------------------------------- def parse_vec2(s: Union[str, Tuple[float, float]]) -> Tuple[float, float]: '''Parse a floating point 2-vector of syntax 'a,b'. Example: '0,1' returns (0,1) ''' if isinstance(s, tuple): return s parts = s.split(',') if len(parts) == 2: return (float(parts[0]), float(parts[1])) raise ValueError(f'cannot parse 2-vector {s}') #---------------------------------------------------------------------------- def make_transform(translate: Tuple[float,float], angle: float): m = np.eye(3) s = np.sin(angle/360.0*np.pi*2) c = np.cos(angle/360.0*np.pi*2) m[0][0] = c m[0][1] = s m[0][2] = translate[0] m[1][0] = -s m[1][1] = c m[1][2] = translate[1] return m #---------------------------------------------------------------------------- def create_samples(N=256, voxel_origin=[0, 0, 0], cube_length=2.0): # NOTE: the voxel_origin is actually the (bottom, left, down) corner, not the middle voxel_origin = np.array(voxel_origin) - cube_length/2 voxel_size = cube_length / (N - 1) overall_index = torch.arange(0, N ** 3, 1, out=torch.LongTensor()) samples = torch.zeros(N ** 3, 3) # transform first 3 columns # to be the x, y, z index samples[:, 2] = overall_index % N samples[:, 1] = (overall_index.float() / N) % N samples[:, 0] = ((overall_index.float() / N) / N) % N # transform first 3 columns # to be the x, y, z coordinate samples[:, 0] = (samples[:, 0] * voxel_size) + voxel_origin[2] samples[:, 1] = (samples[:, 1] * voxel_size) + voxel_origin[1] samples[:, 2] = (samples[:, 2] * voxel_size) + voxel_origin[0] num_samples = N ** 3 return samples.unsqueeze(0), voxel_origin, voxel_size #---------------------------------------------------------------------------- @click.command() @click.option('--network', 'network_pkl', help='Network pickle filename', required=True) @click.option('--seeds', type=parse_range, help='List of random seeds (e.g., \'0,1,4-6\')', required=True) @click.option('--trunc', 'truncation_psi', type=float, help='Truncation psi', default=1, show_default=True) @click.option('--trunc-cutoff', 'truncation_cutoff', type=int, help='Truncation cutoff', default=14, show_default=True) @click.option('--class', 'class_idx', type=int, help='Class label (unconditional if not specified)') @click.option('--outdir', help='Where to save the output images', type=str, required=True, metavar='DIR') @click.option('--shapes', help='Export shapes as .mrc files viewable in ChimeraX', type=bool, required=False, metavar='BOOL', default=False, show_default=True) @click.option('--shape-res', help='', type=int, required=False, metavar='int', default=512, show_default=True) @click.option('--fov-deg', help='Field of View of camera in degrees', type=int, required=False, metavar='float', default=18.837, show_default=True) @click.option('--shape-format', help='Shape Format', type=click.Choice(['.mrc', '.ply']), default='.mrc') @click.option('--reload_modules', help='Overload persistent modules?', type=bool, required=False, metavar='BOOL', default=False, show_default=True) def generate_images( network_pkl: str, seeds: List[int], truncation_psi: float, truncation_cutoff: int, outdir: str, shapes: bool, shape_res: int, fov_deg: float, shape_format: str, class_idx: Optional[int], reload_modules: bool, ): """Generate images using pretrained network pickle. Examples: \b # Generate an image using pre-trained FFHQ model. python gen_samples.py --outdir=output --trunc=0.7 --seeds=0-5 --shapes=True\\ --network=ffhq-rebalanced-128.pkl """ print('Loading networks from "%s"...' % network_pkl) device = torch.device('cuda') with dnnlib.util.open_url(network_pkl) as f: G = legacy.load_network_pkl(f)['G_ema'].to(device) # type: ignore # Specify reload_modules=True if you want code modifications to take effect; otherwise uses pickled code if reload_modules: print("Reloading Modules!") G_new = TriPlaneGenerator(*G.init_args, **G.init_kwargs).eval().requires_grad_(False).to(device) misc.copy_params_and_buffers(G, G_new, require_all=True) G_new.neural_rendering_resolution = G.neural_rendering_resolution G_new.rendering_kwargs = G.rendering_kwargs G = G_new os.makedirs(outdir, exist_ok=True) cam2world_pose = LookAtPoseSampler.sample(3.14/2, 3.14/2, torch.tensor([0, 0, 0.2], device=device), radius=2.7, device=device) intrinsics = FOV_to_intrinsics(fov_deg, device=device) # Generate images. for seed_idx, seed in enumerate(seeds): print('Generating image for seed %d (%d/%d) ...' % (seed, seed_idx, len(seeds))) z = torch.from_numpy(np.random.RandomState(seed).randn(1, G.z_dim)).to(device) imgs = [] angle_p = -0.2 for angle_y, angle_p in [(.4, angle_p), (0, angle_p), (-.4, angle_p)]: cam_pivot = torch.tensor(G.rendering_kwargs.get('avg_camera_pivot', [0, 0, 0]), device=device) cam_radius = G.rendering_kwargs.get('avg_camera_radius', 2.7) cam2world_pose = LookAtPoseSampler.sample(np.pi/2 + angle_y, np.pi/2 + angle_p, cam_pivot, radius=cam_radius, device=device) conditioning_cam2world_pose = LookAtPoseSampler.sample(np.pi/2, np.pi/2, cam_pivot, radius=cam_radius, device=device) camera_params = torch.cat([cam2world_pose.reshape(-1, 16), intrinsics.reshape(-1, 9)], 1) conditioning_params = torch.cat([conditioning_cam2world_pose.reshape(-1, 16), intrinsics.reshape(-1, 9)], 1) ws = G.mapping(z, conditioning_params, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff) img = G.synthesis(ws, camera_params)['image'] img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) imgs.append(img) img = torch.cat(imgs, dim=2) PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB').save(f'{outdir}/seed{seed:04d}.png') if shapes: # extract a shape.mrc with marching cubes. You can view the .mrc file using ChimeraX from UCSF. max_batch=1000000 samples, voxel_origin, voxel_size = create_samples(N=shape_res, voxel_origin=[0, 0, 0], cube_length=G.rendering_kwargs['box_warp'] * 1)#.reshape(1, -1, 3) samples = samples.to(z.device) sigmas = torch.zeros((samples.shape[0], samples.shape[1], 1), device=z.device) transformed_ray_directions_expanded = torch.zeros((samples.shape[0], max_batch, 3), device=z.device) transformed_ray_directions_expanded[..., -1] = -1 head = 0 with tqdm(total = samples.shape[1]) as pbar: with torch.no_grad(): while head < samples.shape[1]: torch.manual_seed(0) sigma = G.sample(samples[:, head:head+max_batch], transformed_ray_directions_expanded[:, :samples.shape[1]-head], z, conditioning_params, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, noise_mode='const')['sigma'] sigmas[:, head:head+max_batch] = sigma head += max_batch pbar.update(max_batch) sigmas = sigmas.reshape((shape_res, shape_res, shape_res)).cpu().numpy() sigmas = np.flip(sigmas, 0) # Trim the border of the extracted cube pad = int(30 * shape_res / 256) pad_value = -1000 sigmas[:pad] = pad_value sigmas[-pad:] = pad_value sigmas[:, :pad] = pad_value sigmas[:, -pad:] = pad_value sigmas[:, :, :pad] = pad_value sigmas[:, :, -pad:] = pad_value if shape_format == '.ply': from shape_utils import convert_sdf_samples_to_ply convert_sdf_samples_to_ply(np.transpose(sigmas, (2, 1, 0)), [0, 0, 0], 1, os.path.join(outdir, f'seed{seed:04d}.ply'), level=10) elif shape_format == '.mrc': # output mrc with mrcfile.new_mmap(os.path.join(outdir, f'seed{seed:04d}.mrc'), overwrite=True, shape=sigmas.shape, mrc_mode=2) as mrc: mrc.data[:] = sigmas #---------------------------------------------------------------------------- if __name__ == "__main__": generate_images() # pylint: disable=no-value-for-parameter #----------------------------------------------------------------------------