File size: 7,163 Bytes
b9be4e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import torch.utils.data as data
import torch
from PIL import Image, ImageFilter 
import os, cv2
import numpy as np
import random
from scipy.stats import norm
from math import floor

def random_translate(image, target):
    if random.random() > 0.5:
        image_height, image_width = image.size
        a = 1
        b = 0
        #c = 30 #left/right (i.e. 5/-5)
        c = int((random.random()-0.5) * 60)
        d = 0
        e = 1
        #f = 30 #up/down (i.e. 5/-5)
        f = int((random.random()-0.5) * 60)
        image = image.transform(image.size, Image.AFFINE, (a, b, c, d, e, f))
        target_translate = target.copy()
        target_translate = target_translate.reshape(-1, 2)
        target_translate[:, 0] -= 1.*c/image_width
        target_translate[:, 1] -= 1.*f/image_height
        target_translate = target_translate.flatten()
        target_translate[target_translate < 0] = 0
        target_translate[target_translate > 1] = 1
        return image, target_translate
    else:
        return image, target

def random_blur(image):
    if random.random() > 0.7:
        image = image.filter(ImageFilter.GaussianBlur(random.random()*5))
    return image

def random_occlusion(image):
    if random.random() > 0.5:
        image_np = np.array(image).astype(np.uint8)
        image_np = image_np[:,:,::-1]
        image_height, image_width, _ = image_np.shape
        occ_height = int(image_height*0.4*random.random())
        occ_width = int(image_width*0.4*random.random())
        occ_xmin = int((image_width - occ_width - 10) * random.random())
        occ_ymin = int((image_height - occ_height - 10) * random.random())
        image_np[occ_ymin:occ_ymin+occ_height, occ_xmin:occ_xmin+occ_width, 0] = int(random.random() * 255)
        image_np[occ_ymin:occ_ymin+occ_height, occ_xmin:occ_xmin+occ_width, 1] = int(random.random() * 255)
        image_np[occ_ymin:occ_ymin+occ_height, occ_xmin:occ_xmin+occ_width, 2] = int(random.random() * 255)
        image_pil = Image.fromarray(image_np[:,:,::-1].astype('uint8'), 'RGB')
        return image_pil
    else:
        return image

def random_flip(image, target, points_flip):
    if random.random() > 0.5:
        image = image.transpose(Image.FLIP_LEFT_RIGHT)
        target = np.array(target).reshape(-1, 2)
        target = target[points_flip, :]
        target[:,0] = 1-target[:,0]
        target = target.flatten()
        return image, target
    else:
        return image, target

def random_rotate(image, target, angle_max):
    if random.random() > 0.5:
        center_x = 0.5
        center_y = 0.5
        landmark_num= int(len(target) / 2)
        target_center = np.array(target) - np.array([center_x, center_y]*landmark_num)
        target_center = target_center.reshape(landmark_num, 2)
        theta_max = np.radians(angle_max)
        theta = random.uniform(-theta_max, theta_max)
        angle = np.degrees(theta)
        image = image.rotate(angle)

        c, s = np.cos(theta), np.sin(theta)
        rot = np.array(((c,-s), (s, c)))
        target_center_rot = np.matmul(target_center, rot)
        target_rot = target_center_rot.reshape(landmark_num*2) + np.array([center_x, center_y]*landmark_num)
        return image, target_rot
    else:
        return image, target

def gen_target_pip(target, meanface_indices, target_map, target_local_x, target_local_y, target_nb_x, target_nb_y):
    num_nb = len(meanface_indices[0])
    map_channel, map_height, map_width = target_map.shape
    target = target.reshape(-1, 2)
    assert map_channel == target.shape[0]

    for i in range(map_channel):
        mu_x = int(floor(target[i][0] * map_width))
        mu_y = int(floor(target[i][1] * map_height))
        mu_x = max(0, mu_x)
        mu_y = max(0, mu_y)
        mu_x = min(mu_x, map_width-1)
        mu_y = min(mu_y, map_height-1)
        target_map[i, mu_y, mu_x] = 1
        shift_x = target[i][0] * map_width - mu_x
        shift_y = target[i][1] * map_height - mu_y
        target_local_x[i, mu_y, mu_x] = shift_x
        target_local_y[i, mu_y, mu_x] = shift_y

        for j in range(num_nb):
            nb_x = target[meanface_indices[i][j]][0] * map_width - mu_x
            nb_y = target[meanface_indices[i][j]][1] * map_height - mu_y
            target_nb_x[num_nb*i+j, mu_y, mu_x] = nb_x
            target_nb_y[num_nb*i+j, mu_y, mu_x] = nb_y

    return target_map, target_local_x, target_local_y, target_nb_x, target_nb_y

class ImageFolder_pip(data.Dataset):
    def __init__(self, root, imgs, input_size, num_lms, net_stride, points_flip, meanface_indices, transform=None, target_transform=None):
        self.root = root
        self.imgs = imgs
        self.num_lms = num_lms
        self.net_stride = net_stride
        self.points_flip = points_flip
        self.meanface_indices = meanface_indices
        self.num_nb = len(meanface_indices[0])
        self.transform = transform
        self.target_transform = target_transform
        self.input_size = input_size

    def __getitem__(self, index):

        img_name, target = self.imgs[index]

        img = Image.open(os.path.join(self.root, img_name)).convert('RGB')
        img, target = random_translate(img, target)
        img = random_occlusion(img)
        img, target = random_flip(img, target, self.points_flip)
        img, target = random_rotate(img, target, 30)
        img = random_blur(img)

        target_map = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
        target_local_x = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
        target_local_y = np.zeros((self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
        target_nb_x = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
        target_nb_y = np.zeros((self.num_nb*self.num_lms, int(self.input_size/self.net_stride), int(self.input_size/self.net_stride)))
        target_map, target_local_x, target_local_y, target_nb_x, target_nb_y = gen_target_pip(target, self.meanface_indices, target_map, target_local_x, target_local_y, target_nb_x, target_nb_y)
        
        target_map = torch.from_numpy(target_map).float()
        target_local_x = torch.from_numpy(target_local_x).float()
        target_local_y = torch.from_numpy(target_local_y).float()
        target_nb_x = torch.from_numpy(target_nb_x).float()
        target_nb_y = torch.from_numpy(target_nb_y).float()

        if self.transform is not None:
            img = self.transform(img)
        if self.target_transform is not None:
            target_map = self.target_transform(target_map)
            target_local_x = self.target_transform(target_local_x)
            target_local_y = self.target_transform(target_local_y)
            target_nb_x = self.target_transform(target_nb_x)
            target_nb_y = self.target_transform(target_nb_y)

        return img, target_map, target_local_x, target_local_y, target_nb_x, target_nb_y

    def __len__(self):
        return len(self.imgs)

if __name__ == '__main__':
    pass