Spaces:
Running
Running
File size: 5,128 Bytes
b9be4e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import cv2
import sys
sys.path.insert(0, "FaceBoxesV2")
sys.path.insert(0, "..")
from math import floor
from faceboxes_detector import *
import torch
import torch.nn.parallel
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.models as models
from networks import *
from functions import *
from PIPNet.reverse_index import ri1, ri2
class Config:
def __init__(self):
self.det_head = "pip"
self.net_stride = 32
self.batch_size = 16
self.init_lr = 0.0001
self.num_epochs = 60
self.decay_steps = [30, 50]
self.input_size = 256
self.backbone = "resnet101"
self.pretrained = True
self.criterion_cls = "l2"
self.criterion_reg = "l1"
self.cls_loss_weight = 10
self.reg_loss_weight = 1
self.num_lms = 98
self.save_interval = self.num_epochs
self.num_nb = 10
self.use_gpu = True
self.gpu_id = 3
def get_lmk_model():
cfg = Config()
resnet101 = models.resnet101(pretrained=cfg.pretrained)
net = Pip_resnet101(
resnet101,
cfg.num_nb,
num_lms=cfg.num_lms,
input_size=cfg.input_size,
net_stride=cfg.net_stride,
)
if cfg.use_gpu:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
else:
device = torch.device("cpu")
net = net.to(device)
weight_file = "/apdcephfs/share_1290939/ahbanliang/codes/PIPNet/snapshots/WFLW/pip_32_16_60_r101_l2_l1_10_1_nb10/epoch59.pth"
state_dict = torch.load(weight_file, map_location=device)
net.load_state_dict(state_dict)
detector = FaceBoxesDetector(
"FaceBoxes",
"FaceBoxesV2/weights/FaceBoxesV2.pth",
use_gpu=True,
device="cuda:0",
)
return net, detector
def demo_image(
image_file,
net,
detector,
input_size=256,
net_stride=32,
num_nb=10,
use_gpu=True,
device="cuda:0",
):
my_thresh = 0.6
det_box_scale = 1.2
net.eval()
preprocess = transforms.Compose(
[
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
reverse_index1, reverse_index2, max_len = ri1, ri2, 17
image = cv2.imread(image_file)
image_height, image_width, _ = image.shape
detections, _ = detector.detect(image, my_thresh, 1)
for i in range(len(detections)):
det_xmin = detections[i][2]
det_ymin = detections[i][3]
det_width = detections[i][4]
det_height = detections[i][5]
det_xmax = det_xmin + det_width - 1
det_ymax = det_ymin + det_height - 1
det_xmin -= int(det_width * (det_box_scale - 1) / 2)
# remove a part of top area for alignment, see paper for details
det_ymin += int(det_height * (det_box_scale - 1) / 2)
det_xmax += int(det_width * (det_box_scale - 1) / 2)
det_ymax += int(det_height * (det_box_scale - 1) / 2)
det_xmin = max(det_xmin, 0)
det_ymin = max(det_ymin, 0)
det_xmax = min(det_xmax, image_width - 1)
det_ymax = min(det_ymax, image_height - 1)
det_width = det_xmax - det_xmin + 1
det_height = det_ymax - det_ymin + 1
cv2.rectangle(image, (det_xmin, det_ymin), (det_xmax, det_ymax), (0, 0, 255), 2)
det_crop = image[det_ymin:det_ymax, det_xmin:det_xmax, :]
det_crop = cv2.resize(det_crop, (input_size, input_size))
inputs = Image.fromarray(det_crop[:, :, ::-1].astype("uint8"), "RGB")
inputs = preprocess(inputs).unsqueeze(0)
inputs = inputs.to(device)
(
lms_pred_x,
lms_pred_y,
lms_pred_nb_x,
lms_pred_nb_y,
outputs_cls,
max_cls,
) = forward_pip(net, inputs, preprocess, input_size, net_stride, num_nb)
lms_pred = torch.cat((lms_pred_x, lms_pred_y), dim=1).flatten()
tmp_nb_x = lms_pred_nb_x[reverse_index1, reverse_index2].view(98, max_len)
tmp_nb_y = lms_pred_nb_y[reverse_index1, reverse_index2].view(98, max_len)
tmp_x = torch.mean(torch.cat((lms_pred_x, tmp_nb_x), dim=1), dim=1).view(-1, 1)
tmp_y = torch.mean(torch.cat((lms_pred_y, tmp_nb_y), dim=1), dim=1).view(-1, 1)
lms_pred_merge = torch.cat((tmp_x, tmp_y), dim=1).flatten()
lms_pred = lms_pred.cpu().numpy()
lms_pred_merge = lms_pred_merge.cpu().numpy()
for i in range(98):
x_pred = lms_pred_merge[i * 2] * det_width
y_pred = lms_pred_merge[i * 2 + 1] * det_height
cv2.circle(
image,
(int(x_pred) + det_xmin, int(y_pred) + det_ymin),
1,
(0, 0, 255),
2,
)
cv2.imwrite("images/1_out.jpg", image)
if __name__ == "__main__":
net, detector = get_lmk_model()
demo_image(
"/apdcephfs/private_ahbanliang/codes/Real-ESRGAN-master/tmp_frames/yanikefu/frame00000046.png",
net,
detector,
)
|