File size: 5,128 Bytes
b9be4e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import cv2
import sys

sys.path.insert(0, "FaceBoxesV2")
sys.path.insert(0, "..")
from math import floor
from faceboxes_detector import *

import torch
import torch.nn.parallel
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.models as models

from networks import *
from functions import *
from PIPNet.reverse_index import ri1, ri2


class Config:
    def __init__(self):
        self.det_head = "pip"
        self.net_stride = 32
        self.batch_size = 16
        self.init_lr = 0.0001
        self.num_epochs = 60
        self.decay_steps = [30, 50]
        self.input_size = 256
        self.backbone = "resnet101"
        self.pretrained = True
        self.criterion_cls = "l2"
        self.criterion_reg = "l1"
        self.cls_loss_weight = 10
        self.reg_loss_weight = 1
        self.num_lms = 98
        self.save_interval = self.num_epochs
        self.num_nb = 10
        self.use_gpu = True
        self.gpu_id = 3


def get_lmk_model():

    cfg = Config()

    resnet101 = models.resnet101(pretrained=cfg.pretrained)
    net = Pip_resnet101(
        resnet101,
        cfg.num_nb,
        num_lms=cfg.num_lms,
        input_size=cfg.input_size,
        net_stride=cfg.net_stride,
    )

    if cfg.use_gpu:
        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    else:
        device = torch.device("cpu")
    net = net.to(device)

    weight_file = "/apdcephfs/share_1290939/ahbanliang/codes/PIPNet/snapshots/WFLW/pip_32_16_60_r101_l2_l1_10_1_nb10/epoch59.pth"
    state_dict = torch.load(weight_file, map_location=device)
    net.load_state_dict(state_dict)

    detector = FaceBoxesDetector(
        "FaceBoxes",
        "FaceBoxesV2/weights/FaceBoxesV2.pth",
        use_gpu=True,
        device="cuda:0",
    )
    return net, detector


def demo_image(
    image_file,
    net,
    detector,
    input_size=256,
    net_stride=32,
    num_nb=10,
    use_gpu=True,
    device="cuda:0",
):

    my_thresh = 0.6
    det_box_scale = 1.2
    net.eval()
    preprocess = transforms.Compose(
        [
            transforms.Resize((256, 256)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        ]
    )
    reverse_index1, reverse_index2, max_len = ri1, ri2, 17
    image = cv2.imread(image_file)
    image_height, image_width, _ = image.shape
    detections, _ = detector.detect(image, my_thresh, 1)
    for i in range(len(detections)):
        det_xmin = detections[i][2]
        det_ymin = detections[i][3]
        det_width = detections[i][4]
        det_height = detections[i][5]
        det_xmax = det_xmin + det_width - 1
        det_ymax = det_ymin + det_height - 1

        det_xmin -= int(det_width * (det_box_scale - 1) / 2)
        # remove a part of top area for alignment, see paper for details
        det_ymin += int(det_height * (det_box_scale - 1) / 2)
        det_xmax += int(det_width * (det_box_scale - 1) / 2)
        det_ymax += int(det_height * (det_box_scale - 1) / 2)
        det_xmin = max(det_xmin, 0)
        det_ymin = max(det_ymin, 0)
        det_xmax = min(det_xmax, image_width - 1)
        det_ymax = min(det_ymax, image_height - 1)
        det_width = det_xmax - det_xmin + 1
        det_height = det_ymax - det_ymin + 1
        cv2.rectangle(image, (det_xmin, det_ymin), (det_xmax, det_ymax), (0, 0, 255), 2)
        det_crop = image[det_ymin:det_ymax, det_xmin:det_xmax, :]
        det_crop = cv2.resize(det_crop, (input_size, input_size))
        inputs = Image.fromarray(det_crop[:, :, ::-1].astype("uint8"), "RGB")
        inputs = preprocess(inputs).unsqueeze(0)
        inputs = inputs.to(device)
        (
            lms_pred_x,
            lms_pred_y,
            lms_pred_nb_x,
            lms_pred_nb_y,
            outputs_cls,
            max_cls,
        ) = forward_pip(net, inputs, preprocess, input_size, net_stride, num_nb)
        lms_pred = torch.cat((lms_pred_x, lms_pred_y), dim=1).flatten()
        tmp_nb_x = lms_pred_nb_x[reverse_index1, reverse_index2].view(98, max_len)
        tmp_nb_y = lms_pred_nb_y[reverse_index1, reverse_index2].view(98, max_len)
        tmp_x = torch.mean(torch.cat((lms_pred_x, tmp_nb_x), dim=1), dim=1).view(-1, 1)
        tmp_y = torch.mean(torch.cat((lms_pred_y, tmp_nb_y), dim=1), dim=1).view(-1, 1)
        lms_pred_merge = torch.cat((tmp_x, tmp_y), dim=1).flatten()
        lms_pred = lms_pred.cpu().numpy()
        lms_pred_merge = lms_pred_merge.cpu().numpy()
        for i in range(98):
            x_pred = lms_pred_merge[i * 2] * det_width
            y_pred = lms_pred_merge[i * 2 + 1] * det_height
            cv2.circle(
                image,
                (int(x_pred) + det_xmin, int(y_pred) + det_ymin),
                1,
                (0, 0, 255),
                2,
            )
    cv2.imwrite("images/1_out.jpg", image)


if __name__ == "__main__":
    net, detector = get_lmk_model()
    demo_image(
        "/apdcephfs/private_ahbanliang/codes/Real-ESRGAN-master/tmp_frames/yanikefu/frame00000046.png",
        net,
        detector,
    )