File size: 5,808 Bytes
b9be4e6
 
20a8355
b9be4e6
89b3f7a
 
 
4599493
c0e9547
10b1a75
89b3f7a
 
 
 
 
 
7267bae
b9be4e6
89b3f7a
b9be4e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c69e759
b9be4e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import cv2
import sys
import os


def make_pipnet():
    cmds = [
        "cd ./third_party/PIPNet/FaceBoxesV2/utils/ && chmod +x ./make.sh "
        "&& bash ./make.sh "
        "&& cd - ",
    ]
    for cmd in cmds:
        os.system(cmd)
    print('[PIPNet.lib.tools] nms .o file built successfully.')


make_pipnet()


from math import floor
from third_party.PIPNet.FaceBoxesV2.faceboxes_detector import *

import torch
import torch.nn.parallel
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.models as models

from third_party.PIPNet.lib.networks import *
from third_party.PIPNet.lib.functions import *
from third_party.PIPNet.reverse_index import ri1, ri2


make_abs_path = lambda fn: os.path.abspath(os.path.join(os.path.dirname(os.path.realpath(__file__)), fn))


class Config:
    def __init__(self):
        self.det_head = "pip"
        self.net_stride = 32
        self.batch_size = 16
        self.init_lr = 0.0001
        self.num_epochs = 60
        self.decay_steps = [30, 50]
        self.input_size = 256
        self.backbone = "resnet101"
        self.pretrained = True
        self.criterion_cls = "l2"
        self.criterion_reg = "l1"
        self.cls_loss_weight = 10
        self.reg_loss_weight = 1
        self.num_lms = 98
        self.save_interval = self.num_epochs
        self.num_nb = 10
        self.use_gpu = True
        self.gpu_id = 3


def get_lmk_model():

    cfg = Config()

    resnet101 = models.resnet101(pretrained=cfg.pretrained)
    net = Pip_resnet101(
        resnet101,
        cfg.num_nb,
        num_lms=cfg.num_lms,
        input_size=cfg.input_size,
        net_stride=cfg.net_stride,
    )

    if cfg.use_gpu:
        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    else:
        device = torch.device("cpu")
    net = net.to(device)

    weight_file = make_abs_path('../../../weights/PIPNet/epoch59.pth')
    state_dict = torch.load(weight_file, map_location=device)
    net.load_state_dict(state_dict)

    detector = FaceBoxesDetector(
        "FaceBoxes",
        make_abs_path("../../../weights/PIPNet/FaceBoxesV2.pth"),
        use_gpu=torch.cuda.is_available(),
        device=device,
    )
    return net, detector


def demo_image(
    image_file,
    net,
    detector,
    input_size=256,
    net_stride=32,
    num_nb=10,
    use_gpu=True,
    device="cuda:0",
):

    my_thresh = 0.6
    det_box_scale = 1.2
    net.eval()
    preprocess = transforms.Compose(
        [
            transforms.Resize((256, 256)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        ]
    )
    reverse_index1, reverse_index2, max_len = ri1, ri2, 17
    # image = cv2.imread(image_file)
    image = image_file
    image_height, image_width, _ = image.shape
    detections, _ = detector.detect(image, my_thresh, 1)
    lmks = []
    for i in range(len(detections)):
        det_xmin = detections[i][2]
        det_ymin = detections[i][3]
        det_width = detections[i][4]
        det_height = detections[i][5]
        det_xmax = det_xmin + det_width - 1
        det_ymax = det_ymin + det_height - 1

        det_xmin -= int(det_width * (det_box_scale - 1) / 2)
        # remove a part of top area for alignment, see paper for details
        det_ymin += int(det_height * (det_box_scale - 1) / 2)
        det_xmax += int(det_width * (det_box_scale - 1) / 2)
        det_ymax += int(det_height * (det_box_scale - 1) / 2)
        det_xmin = max(det_xmin, 0)
        det_ymin = max(det_ymin, 0)
        det_xmax = min(det_xmax, image_width - 1)
        det_ymax = min(det_ymax, image_height - 1)
        det_width = det_xmax - det_xmin + 1
        det_height = det_ymax - det_ymin + 1

        # cv2.rectangle(image, (det_xmin, det_ymin), (det_xmax, det_ymax), (0, 0, 255), 2)

        det_crop = image[det_ymin:det_ymax, det_xmin:det_xmax, :]
        det_crop = cv2.resize(det_crop, (input_size, input_size))
        inputs = Image.fromarray(det_crop[:, :, ::-1].astype("uint8"), "RGB")
        inputs = preprocess(inputs).unsqueeze(0)
        inputs = inputs.to(device)
        (
            lms_pred_x,
            lms_pred_y,
            lms_pred_nb_x,
            lms_pred_nb_y,
            outputs_cls,
            max_cls,
        ) = forward_pip(net, inputs, preprocess, input_size, net_stride, num_nb)
        lms_pred = torch.cat((lms_pred_x, lms_pred_y), dim=1).flatten()
        tmp_nb_x = lms_pred_nb_x[reverse_index1, reverse_index2].view(98, max_len)
        tmp_nb_y = lms_pred_nb_y[reverse_index1, reverse_index2].view(98, max_len)
        tmp_x = torch.mean(torch.cat((lms_pred_x, tmp_nb_x), dim=1), dim=1).view(-1, 1)
        tmp_y = torch.mean(torch.cat((lms_pred_y, tmp_nb_y), dim=1), dim=1).view(-1, 1)
        lms_pred_merge = torch.cat((tmp_x, tmp_y), dim=1).flatten()
        lms_pred = lms_pred.cpu().numpy()
        lms_pred_merge = lms_pred_merge.cpu().numpy()
        lmk_ = []
        for i in range(98):
            x_pred = lms_pred_merge[i * 2] * det_width
            y_pred = lms_pred_merge[i * 2 + 1] * det_height

            # cv2.circle(
            #     image,
            #     (int(x_pred) + det_xmin, int(y_pred) + det_ymin),
            #     1,
            #     (0, 0, 255),
            #     1,
            # )

            lmk_.append([int(x_pred) + det_xmin, int(y_pred) + det_ymin])
        lmks.append(np.array(lmk_))

    # image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
    # cv2.imwrite("./1_out.jpg", image_bgr)

    return lmks


if __name__ == "__main__":
    net, detector = get_lmk_model()
    demo_image(
        "/apdcephfs/private_ahbanliang/codes/Real-ESRGAN-master/tmp_frames/yanikefu/frame00000046.png",
        net,
        detector,
    )