File size: 8,486 Bytes
b9be4e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import cv2, os
import sys
sys.path.insert(0, '..')
import numpy as np
from PIL import Image
import logging
import copy
import importlib

import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data
import torch.nn.functional as F
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models

from networks import *
import data_utils
from functions import * 
from mobilenetv3 import mobilenetv3_large

if not len(sys.argv) == 2:
    print('Format:')
    print('python lib/train.py config_file')
    exit(0)
experiment_name = sys.argv[1].split('/')[-1][:-3]
data_name = sys.argv[1].split('/')[-2]
config_path = '.experiments.{}.{}'.format(data_name, experiment_name)

my_config = importlib.import_module(config_path, package='PIPNet')
Config = getattr(my_config, 'Config')
cfg = Config()
cfg.experiment_name = experiment_name
cfg.data_name = data_name

os.environ['CUDA_VISIBLE_DEVICES'] = str(cfg.gpu_id)

if not os.path.exists(os.path.join('./snapshots', cfg.data_name)):
    os.mkdir(os.path.join('./snapshots', cfg.data_name))
save_dir = os.path.join('./snapshots', cfg.data_name, cfg.experiment_name)
if not os.path.exists(save_dir):
    os.mkdir(save_dir)

if not os.path.exists(os.path.join('./logs', cfg.data_name)):
    os.mkdir(os.path.join('./logs', cfg.data_name))
log_dir = os.path.join('./logs', cfg.data_name, cfg.experiment_name)
if not os.path.exists(log_dir):
    os.mkdir(log_dir)

logging.basicConfig(filename=os.path.join(log_dir, 'train.log'), level=logging.INFO)

print('###########################################')
print('experiment_name:', cfg.experiment_name)
print('data_name:', cfg.data_name)
print('det_head:', cfg.det_head)
print('net_stride:', cfg.net_stride)
print('batch_size:', cfg.batch_size)
print('init_lr:', cfg.init_lr)
print('num_epochs:', cfg.num_epochs)
print('decay_steps:', cfg.decay_steps)
print('input_size:', cfg.input_size)
print('backbone:', cfg.backbone)
print('pretrained:', cfg.pretrained)
print('criterion_cls:', cfg.criterion_cls)
print('criterion_reg:', cfg.criterion_reg)
print('cls_loss_weight:', cfg.cls_loss_weight)
print('reg_loss_weight:', cfg.reg_loss_weight)
print('num_lms:', cfg.num_lms)
print('save_interval:', cfg.save_interval)
print('num_nb:', cfg.num_nb)
print('use_gpu:', cfg.use_gpu)
print('gpu_id:', cfg.gpu_id)
print('###########################################')
logging.info('###########################################')
logging.info('experiment_name: {}'.format(cfg.experiment_name))
logging.info('data_name: {}'.format(cfg.data_name))
logging.info('det_head: {}'.format(cfg.det_head))
logging.info('net_stride: {}'.format(cfg.net_stride))
logging.info('batch_size: {}'.format(cfg.batch_size))
logging.info('init_lr: {}'.format(cfg.init_lr))
logging.info('num_epochs: {}'.format(cfg.num_epochs))
logging.info('decay_steps: {}'.format(cfg.decay_steps))
logging.info('input_size: {}'.format(cfg.input_size))
logging.info('backbone: {}'.format(cfg.backbone))
logging.info('pretrained: {}'.format(cfg.pretrained))
logging.info('criterion_cls: {}'.format(cfg.criterion_cls))
logging.info('criterion_reg: {}'.format(cfg.criterion_reg))
logging.info('cls_loss_weight: {}'.format(cfg.cls_loss_weight))
logging.info('reg_loss_weight: {}'.format(cfg.reg_loss_weight))
logging.info('num_lms: {}'.format(cfg.num_lms))
logging.info('save_interval: {}'.format(cfg.save_interval))
logging.info('num_nb: {}'.format(cfg.num_nb))
logging.info('use_gpu: {}'.format(cfg.use_gpu))
logging.info('gpu_id: {}'.format(cfg.gpu_id))
logging.info('###########################################')

if cfg.det_head == 'pip':
    meanface_indices, _, _, _ = get_meanface(os.path.join('data', cfg.data_name, 'meanface.txt'), cfg.num_nb)


if cfg.det_head == 'pip':
    if cfg.backbone == 'resnet18':
        resnet18 = models.resnet18(pretrained=cfg.pretrained)
        net = Pip_resnet18(resnet18, cfg.num_nb, num_lms=cfg.num_lms, input_size=cfg.input_size, net_stride=cfg.net_stride)
    elif cfg.backbone == 'resnet50':
        resnet50 = models.resnet50(pretrained=cfg.pretrained)
        net = Pip_resnet50(resnet50, cfg.num_nb, num_lms=cfg.num_lms, input_size=cfg.input_size, net_stride=cfg.net_stride)
    elif cfg.backbone == 'resnet101':
        resnet101 = models.resnet101(pretrained=cfg.pretrained)
        net = Pip_resnet101(resnet101, cfg.num_nb, num_lms=cfg.num_lms, input_size=cfg.input_size, net_stride=cfg.net_stride)
    elif cfg.backbone == 'mobilenet_v2':
        mbnet = models.mobilenet_v2(pretrained=cfg.pretrained)
        net = Pip_mbnetv2(mbnet, cfg.num_nb, num_lms=cfg.num_lms, input_size=cfg.input_size, net_stride=cfg.net_stride)
    elif cfg.backbone == 'mobilenet_v3':
        mbnet = mobilenetv3_large()
        if cfg.pretrained:
            mbnet.load_state_dict(torch.load('lib/mobilenetv3-large-1cd25616.pth'))
        net = Pip_mbnetv3(mbnet, cfg.num_nb, num_lms=cfg.num_lms, input_size=cfg.input_size, net_stride=cfg.net_stride)
    else:
        print('No such backbone!')
        exit(0)
else:
    print('No such head:', cfg.det_head)
    exit(0)

if cfg.use_gpu:
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
else:
    device = torch.device("cpu")
net = net.to(device)

criterion_cls = None
if cfg.criterion_cls == 'l2':
    criterion_cls = nn.MSELoss()
elif cfg.criterion_cls == 'l1':
    criterion_cls = nn.L1Loss()
else:
    print('No such cls criterion:', cfg.criterion_cls)

criterion_reg = None
if cfg.criterion_reg == 'l1':
    criterion_reg = nn.L1Loss()
elif cfg.criterion_reg == 'l2':
    criterion_reg = nn.MSELoss()
else:
    print('No such reg criterion:', cfg.criterion_reg)

points_flip = None
if cfg.data_name == 'data_300W':
    points_flip = [17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 28, 29, 30, 31, 36, 35, 34, 33, 32, 46, 45, 44, 43, 48, 47, 40, 39, 38, 37, 42, 41, 55, 54, 53, 52, 51, 50, 49, 60, 59, 58, 57, 56, 65, 64, 63, 62, 61, 68, 67, 66]
    points_flip = (np.array(points_flip)-1).tolist()
    assert len(points_flip) == 68
elif cfg.data_name == 'WFLW':
    points_flip = [32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 46, 45, 44, 43, 42, 50, 49, 48, 47, 37, 36, 35, 34, 33, 41, 40, 39, 38, 51, 52, 53, 54, 59, 58, 57, 56, 55, 72, 71, 70, 69, 68, 75, 74, 73, 64, 63, 62, 61, 60, 67, 66, 65, 82, 81, 80, 79, 78, 77, 76, 87, 86, 85, 84, 83, 92, 91, 90, 89, 88, 95, 94, 93, 97, 96]
    assert len(points_flip) == 98
elif cfg.data_name == 'COFW':
    points_flip = [2, 1, 4, 3, 7, 8, 5, 6, 10, 9, 12, 11, 15, 16, 13, 14, 18, 17, 20, 19, 21, 22, 24, 23, 25, 26, 27, 28, 29]
    points_flip = (np.array(points_flip)-1).tolist()
    assert len(points_flip) == 29
elif cfg.data_name == 'AFLW':
    points_flip = [6, 5, 4, 3, 2, 1, 12, 11, 10, 9, 8, 7, 15, 14, 13, 18, 17, 16, 19]
    points_flip = (np.array(points_flip)-1).tolist()
    assert len(points_flip) == 19
else:
    print('No such data!')
    exit(0)

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])

if cfg.pretrained:  
    optimizer = optim.Adam(net.parameters(), lr=cfg.init_lr)
else:
    optimizer = optim.Adam(net.parameters(), lr=cfg.init_lr, weight_decay=5e-4)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=cfg.decay_steps, gamma=0.1)

labels = get_label(cfg.data_name, 'train.txt')

if cfg.det_head == 'pip':
    train_data = data_utils.ImageFolder_pip(os.path.join('data', cfg.data_name, 'images_train'), 
                                              labels, cfg.input_size, cfg.num_lms, 
                                              cfg.net_stride, points_flip, meanface_indices,
                                              transforms.Compose([
                                              transforms.RandomGrayscale(0.2),
                                              transforms.ToTensor(),
                                              normalize]))
else:
    print('No such head:', cfg.det_head)
    exit(0)

train_loader = torch.utils.data.DataLoader(train_data, batch_size=cfg.batch_size, shuffle=True, num_workers=8, pin_memory=True, drop_last=True)

train_model(cfg.det_head, net, train_loader, criterion_cls, criterion_reg, cfg.cls_loss_weight, cfg.reg_loss_weight, cfg.num_nb, optimizer, cfg.num_epochs, scheduler, save_dir, cfg.save_interval, device)