Spaces:
Running
Running
File size: 8,486 Bytes
b9be4e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import cv2, os
import sys
sys.path.insert(0, '..')
import numpy as np
from PIL import Image
import logging
import copy
import importlib
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data
import torch.nn.functional as F
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
from networks import *
import data_utils
from functions import *
from mobilenetv3 import mobilenetv3_large
if not len(sys.argv) == 2:
print('Format:')
print('python lib/train.py config_file')
exit(0)
experiment_name = sys.argv[1].split('/')[-1][:-3]
data_name = sys.argv[1].split('/')[-2]
config_path = '.experiments.{}.{}'.format(data_name, experiment_name)
my_config = importlib.import_module(config_path, package='PIPNet')
Config = getattr(my_config, 'Config')
cfg = Config()
cfg.experiment_name = experiment_name
cfg.data_name = data_name
os.environ['CUDA_VISIBLE_DEVICES'] = str(cfg.gpu_id)
if not os.path.exists(os.path.join('./snapshots', cfg.data_name)):
os.mkdir(os.path.join('./snapshots', cfg.data_name))
save_dir = os.path.join('./snapshots', cfg.data_name, cfg.experiment_name)
if not os.path.exists(save_dir):
os.mkdir(save_dir)
if not os.path.exists(os.path.join('./logs', cfg.data_name)):
os.mkdir(os.path.join('./logs', cfg.data_name))
log_dir = os.path.join('./logs', cfg.data_name, cfg.experiment_name)
if not os.path.exists(log_dir):
os.mkdir(log_dir)
logging.basicConfig(filename=os.path.join(log_dir, 'train.log'), level=logging.INFO)
print('###########################################')
print('experiment_name:', cfg.experiment_name)
print('data_name:', cfg.data_name)
print('det_head:', cfg.det_head)
print('net_stride:', cfg.net_stride)
print('batch_size:', cfg.batch_size)
print('init_lr:', cfg.init_lr)
print('num_epochs:', cfg.num_epochs)
print('decay_steps:', cfg.decay_steps)
print('input_size:', cfg.input_size)
print('backbone:', cfg.backbone)
print('pretrained:', cfg.pretrained)
print('criterion_cls:', cfg.criterion_cls)
print('criterion_reg:', cfg.criterion_reg)
print('cls_loss_weight:', cfg.cls_loss_weight)
print('reg_loss_weight:', cfg.reg_loss_weight)
print('num_lms:', cfg.num_lms)
print('save_interval:', cfg.save_interval)
print('num_nb:', cfg.num_nb)
print('use_gpu:', cfg.use_gpu)
print('gpu_id:', cfg.gpu_id)
print('###########################################')
logging.info('###########################################')
logging.info('experiment_name: {}'.format(cfg.experiment_name))
logging.info('data_name: {}'.format(cfg.data_name))
logging.info('det_head: {}'.format(cfg.det_head))
logging.info('net_stride: {}'.format(cfg.net_stride))
logging.info('batch_size: {}'.format(cfg.batch_size))
logging.info('init_lr: {}'.format(cfg.init_lr))
logging.info('num_epochs: {}'.format(cfg.num_epochs))
logging.info('decay_steps: {}'.format(cfg.decay_steps))
logging.info('input_size: {}'.format(cfg.input_size))
logging.info('backbone: {}'.format(cfg.backbone))
logging.info('pretrained: {}'.format(cfg.pretrained))
logging.info('criterion_cls: {}'.format(cfg.criterion_cls))
logging.info('criterion_reg: {}'.format(cfg.criterion_reg))
logging.info('cls_loss_weight: {}'.format(cfg.cls_loss_weight))
logging.info('reg_loss_weight: {}'.format(cfg.reg_loss_weight))
logging.info('num_lms: {}'.format(cfg.num_lms))
logging.info('save_interval: {}'.format(cfg.save_interval))
logging.info('num_nb: {}'.format(cfg.num_nb))
logging.info('use_gpu: {}'.format(cfg.use_gpu))
logging.info('gpu_id: {}'.format(cfg.gpu_id))
logging.info('###########################################')
if cfg.det_head == 'pip':
meanface_indices, _, _, _ = get_meanface(os.path.join('data', cfg.data_name, 'meanface.txt'), cfg.num_nb)
if cfg.det_head == 'pip':
if cfg.backbone == 'resnet18':
resnet18 = models.resnet18(pretrained=cfg.pretrained)
net = Pip_resnet18(resnet18, cfg.num_nb, num_lms=cfg.num_lms, input_size=cfg.input_size, net_stride=cfg.net_stride)
elif cfg.backbone == 'resnet50':
resnet50 = models.resnet50(pretrained=cfg.pretrained)
net = Pip_resnet50(resnet50, cfg.num_nb, num_lms=cfg.num_lms, input_size=cfg.input_size, net_stride=cfg.net_stride)
elif cfg.backbone == 'resnet101':
resnet101 = models.resnet101(pretrained=cfg.pretrained)
net = Pip_resnet101(resnet101, cfg.num_nb, num_lms=cfg.num_lms, input_size=cfg.input_size, net_stride=cfg.net_stride)
elif cfg.backbone == 'mobilenet_v2':
mbnet = models.mobilenet_v2(pretrained=cfg.pretrained)
net = Pip_mbnetv2(mbnet, cfg.num_nb, num_lms=cfg.num_lms, input_size=cfg.input_size, net_stride=cfg.net_stride)
elif cfg.backbone == 'mobilenet_v3':
mbnet = mobilenetv3_large()
if cfg.pretrained:
mbnet.load_state_dict(torch.load('lib/mobilenetv3-large-1cd25616.pth'))
net = Pip_mbnetv3(mbnet, cfg.num_nb, num_lms=cfg.num_lms, input_size=cfg.input_size, net_stride=cfg.net_stride)
else:
print('No such backbone!')
exit(0)
else:
print('No such head:', cfg.det_head)
exit(0)
if cfg.use_gpu:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
else:
device = torch.device("cpu")
net = net.to(device)
criterion_cls = None
if cfg.criterion_cls == 'l2':
criterion_cls = nn.MSELoss()
elif cfg.criterion_cls == 'l1':
criterion_cls = nn.L1Loss()
else:
print('No such cls criterion:', cfg.criterion_cls)
criterion_reg = None
if cfg.criterion_reg == 'l1':
criterion_reg = nn.L1Loss()
elif cfg.criterion_reg == 'l2':
criterion_reg = nn.MSELoss()
else:
print('No such reg criterion:', cfg.criterion_reg)
points_flip = None
if cfg.data_name == 'data_300W':
points_flip = [17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 28, 29, 30, 31, 36, 35, 34, 33, 32, 46, 45, 44, 43, 48, 47, 40, 39, 38, 37, 42, 41, 55, 54, 53, 52, 51, 50, 49, 60, 59, 58, 57, 56, 65, 64, 63, 62, 61, 68, 67, 66]
points_flip = (np.array(points_flip)-1).tolist()
assert len(points_flip) == 68
elif cfg.data_name == 'WFLW':
points_flip = [32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 46, 45, 44, 43, 42, 50, 49, 48, 47, 37, 36, 35, 34, 33, 41, 40, 39, 38, 51, 52, 53, 54, 59, 58, 57, 56, 55, 72, 71, 70, 69, 68, 75, 74, 73, 64, 63, 62, 61, 60, 67, 66, 65, 82, 81, 80, 79, 78, 77, 76, 87, 86, 85, 84, 83, 92, 91, 90, 89, 88, 95, 94, 93, 97, 96]
assert len(points_flip) == 98
elif cfg.data_name == 'COFW':
points_flip = [2, 1, 4, 3, 7, 8, 5, 6, 10, 9, 12, 11, 15, 16, 13, 14, 18, 17, 20, 19, 21, 22, 24, 23, 25, 26, 27, 28, 29]
points_flip = (np.array(points_flip)-1).tolist()
assert len(points_flip) == 29
elif cfg.data_name == 'AFLW':
points_flip = [6, 5, 4, 3, 2, 1, 12, 11, 10, 9, 8, 7, 15, 14, 13, 18, 17, 16, 19]
points_flip = (np.array(points_flip)-1).tolist()
assert len(points_flip) == 19
else:
print('No such data!')
exit(0)
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
if cfg.pretrained:
optimizer = optim.Adam(net.parameters(), lr=cfg.init_lr)
else:
optimizer = optim.Adam(net.parameters(), lr=cfg.init_lr, weight_decay=5e-4)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=cfg.decay_steps, gamma=0.1)
labels = get_label(cfg.data_name, 'train.txt')
if cfg.det_head == 'pip':
train_data = data_utils.ImageFolder_pip(os.path.join('data', cfg.data_name, 'images_train'),
labels, cfg.input_size, cfg.num_lms,
cfg.net_stride, points_flip, meanface_indices,
transforms.Compose([
transforms.RandomGrayscale(0.2),
transforms.ToTensor(),
normalize]))
else:
print('No such head:', cfg.det_head)
exit(0)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=cfg.batch_size, shuffle=True, num_workers=8, pin_memory=True, drop_last=True)
train_model(cfg.det_head, net, train_loader, criterion_cls, criterion_reg, cfg.cls_loss_weight, cfg.reg_loss_weight, cfg.num_nb, optimizer, cfg.num_epochs, scheduler, save_dir, cfg.save_interval, device)
|