import os, cv2 import numpy as np from PIL import Image, ImageFilter import logging import torch import torch.nn as nn import random def get_label(data_name, label_file, task_type=None): label_path = os.path.join('data', data_name, label_file) with open(label_path, 'r') as f: labels = f.readlines() labels = [x.strip().split() for x in labels] if len(labels[0])==1: return labels labels_new = [] for label in labels: image_name = label[0] target = label[1:] target = np.array([float(x) for x in target]) if task_type is None: labels_new.append([image_name, target]) else: labels_new.append([image_name, task_type, target]) return labels_new def get_meanface(meanface_file, num_nb): with open(meanface_file) as f: meanface = f.readlines()[0] meanface = meanface.strip().split() meanface = [float(x) for x in meanface] meanface = np.array(meanface).reshape(-1, 2) # each landmark predicts num_nb neighbors meanface_indices = [] for i in range(meanface.shape[0]): pt = meanface[i,:] dists = np.sum(np.power(pt-meanface, 2), axis=1) indices = np.argsort(dists) meanface_indices.append(indices[1:1+num_nb]) # each landmark predicted by X neighbors, X varies meanface_indices_reversed = {} for i in range(meanface.shape[0]): meanface_indices_reversed[i] = [[],[]] for i in range(meanface.shape[0]): for j in range(num_nb): meanface_indices_reversed[meanface_indices[i][j]][0].append(i) meanface_indices_reversed[meanface_indices[i][j]][1].append(j) max_len = 0 for i in range(meanface.shape[0]): tmp_len = len(meanface_indices_reversed[i][0]) if tmp_len > max_len: max_len = tmp_len # tricks, make them have equal length for efficient computation for i in range(meanface.shape[0]): tmp_len = len(meanface_indices_reversed[i][0]) meanface_indices_reversed[i][0] += meanface_indices_reversed[i][0]*10 meanface_indices_reversed[i][1] += meanface_indices_reversed[i][1]*10 meanface_indices_reversed[i][0] = meanface_indices_reversed[i][0][:max_len] meanface_indices_reversed[i][1] = meanface_indices_reversed[i][1][:max_len] # make the indices 1-dim reverse_index1 = [] reverse_index2 = [] for i in range(meanface.shape[0]): reverse_index1 += meanface_indices_reversed[i][0] reverse_index2 += meanface_indices_reversed[i][1] return meanface_indices, reverse_index1, reverse_index2, max_len def compute_loss_pip(outputs_map1, outputs_map2, outputs_map3, outputs_local_x, outputs_local_y, outputs_nb_x, outputs_nb_y, labels_map1, labels_map2, labels_map3, labels_local_x, labels_local_y, labels_nb_x, labels_nb_y, masks_map1, masks_map2, masks_map3, masks_local_x, masks_local_y, masks_nb_x, masks_nb_y, criterion_cls, criterion_reg, num_nb): tmp_batch, tmp_channel, tmp_height, tmp_width = outputs_map1.size() labels_map1 = labels_map1.view(tmp_batch*tmp_channel, -1) labels_max_ids = torch.argmax(labels_map1, 1) labels_max_ids = labels_max_ids.view(-1, 1) labels_max_ids_nb = labels_max_ids.repeat(1, num_nb).view(-1, 1) outputs_local_x = outputs_local_x.view(tmp_batch*tmp_channel, -1) outputs_local_x_select = torch.gather(outputs_local_x, 1, labels_max_ids) outputs_local_y = outputs_local_y.view(tmp_batch*tmp_channel, -1) outputs_local_y_select = torch.gather(outputs_local_y, 1, labels_max_ids) outputs_nb_x = outputs_nb_x.view(tmp_batch*num_nb*tmp_channel, -1) outputs_nb_x_select = torch.gather(outputs_nb_x, 1, labels_max_ids_nb) outputs_nb_y = outputs_nb_y.view(tmp_batch*num_nb*tmp_channel, -1) outputs_nb_y_select = torch.gather(outputs_nb_y, 1, labels_max_ids_nb) labels_local_x = labels_local_x.view(tmp_batch*tmp_channel, -1) labels_local_x_select = torch.gather(labels_local_x, 1, labels_max_ids) labels_local_y = labels_local_y.view(tmp_batch*tmp_channel, -1) labels_local_y_select = torch.gather(labels_local_y, 1, labels_max_ids) labels_nb_x = labels_nb_x.view(tmp_batch*num_nb*tmp_channel, -1) labels_nb_x_select = torch.gather(labels_nb_x, 1, labels_max_ids_nb) labels_nb_y = labels_nb_y.view(tmp_batch*num_nb*tmp_channel, -1) labels_nb_y_select = torch.gather(labels_nb_y, 1, labels_max_ids_nb) masks_local_x = masks_local_x.view(tmp_batch*tmp_channel, -1) masks_local_x_select = torch.gather(masks_local_x, 1, labels_max_ids) masks_local_y = masks_local_y.view(tmp_batch*tmp_channel, -1) masks_local_y_select = torch.gather(masks_local_y, 1, labels_max_ids) masks_nb_x = masks_nb_x.view(tmp_batch*num_nb*tmp_channel, -1) masks_nb_x_select = torch.gather(masks_nb_x, 1, labels_max_ids_nb) masks_nb_y = masks_nb_y.view(tmp_batch*num_nb*tmp_channel, -1) masks_nb_y_select = torch.gather(masks_nb_y, 1, labels_max_ids_nb) ########################################## outputs_map1 = outputs_map1.view(tmp_batch*tmp_channel, -1) outputs_map2 = outputs_map2.view(tmp_batch*tmp_channel, -1) outputs_map3 = outputs_map3.view(tmp_batch*tmp_channel, -1) labels_map2 = labels_map2.view(tmp_batch*tmp_channel, -1) labels_map3 = labels_map3.view(tmp_batch*tmp_channel, -1) masks_map1 = masks_map1.view(tmp_batch*tmp_channel, -1) masks_map2 = masks_map2.view(tmp_batch*tmp_channel, -1) masks_map3 = masks_map3.view(tmp_batch*tmp_channel, -1) outputs_map = torch.cat([outputs_map1, outputs_map2, outputs_map3], 1) labels_map = torch.cat([labels_map1, labels_map2, labels_map3], 1) masks_map = torch.cat([masks_map1, masks_map2, masks_map3], 1) loss_map = criterion_cls(outputs_map*masks_map, labels_map*masks_map) if not masks_map.sum() == 0: loss_map /= masks_map.sum() ########################################## loss_x = criterion_reg(outputs_local_x_select*masks_local_x_select, labels_local_x_select*masks_local_x_select) if not masks_local_x_select.sum() == 0: loss_x /= masks_local_x_select.sum() loss_y = criterion_reg(outputs_local_y_select*masks_local_y_select, labels_local_y_select*masks_local_y_select) if not masks_local_y_select.sum() == 0: loss_y /= masks_local_y_select.sum() loss_nb_x = criterion_reg(outputs_nb_x_select*masks_nb_x_select, labels_nb_x_select*masks_nb_x_select) if not masks_nb_x_select.sum() == 0: loss_nb_x /= masks_nb_x_select.sum() loss_nb_y = criterion_reg(outputs_nb_y_select*masks_nb_y_select, labels_nb_y_select*masks_nb_y_select) if not masks_nb_y_select.sum() == 0: loss_nb_y /= masks_nb_y_select.sum() return loss_map, loss_x, loss_y, loss_nb_x, loss_nb_y def train_model(det_head, net, train_loader, criterion_cls, criterion_reg, cls_loss_weight, reg_loss_weight, num_nb, optimizer, num_epochs, scheduler, save_dir, save_interval, device): for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch, num_epochs - 1)) logging.info('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10) logging.info('-' * 10) net.train() epoch_loss = 0.0 for i, data in enumerate(train_loader): if det_head == 'pip': inputs, labels_map1, labels_map2, labels_map3, labels_x, labels_y, labels_nb_x, labels_nb_y, masks_map1, masks_map2, masks_map3, masks_x, masks_y, masks_nb_x, masks_nb_y = data inputs = inputs.to(device) labels_map1 = labels_map1.to(device) labels_map2 = labels_map2.to(device) labels_map3 = labels_map3.to(device) labels_x = labels_x.to(device) labels_y = labels_y.to(device) labels_nb_x = labels_nb_x.to(device) labels_nb_y = labels_nb_y.to(device) masks_map1 = masks_map1.to(device) masks_map2 = masks_map2.to(device) masks_map3 = masks_map3.to(device) masks_x = masks_x.to(device) masks_y = masks_y.to(device) masks_nb_x = masks_nb_x.to(device) masks_nb_y = masks_nb_y.to(device) outputs_map1, outputs_map2, outputs_map3, outputs_x, outputs_y, outputs_nb_x, outputs_nb_y = net(inputs) loss_map, loss_x, loss_y, loss_nb_x, loss_nb_y = compute_loss_pip(outputs_map1, outputs_map2, outputs_map3, outputs_x, outputs_y, outputs_nb_x, outputs_nb_y, labels_map1, labels_map2, labels_map3, labels_x, labels_y, labels_nb_x, labels_nb_y, masks_map1, masks_map2, masks_map3, masks_x, masks_y, masks_nb_x, masks_nb_y, criterion_cls, criterion_reg, num_nb) loss = cls_loss_weight*loss_map + reg_loss_weight*loss_x + reg_loss_weight*loss_y + reg_loss_weight*loss_nb_x + reg_loss_weight*loss_nb_y else: print('No such head:', det_head) exit(0) optimizer.zero_grad() loss.backward() optimizer.step() if i%10 == 0: if det_head == 'pip': print('[Epoch {:d}/{:d}, Batch {:d}/{:d}] '.format( epoch, num_epochs-1, i, len(train_loader)-1, loss.item(), cls_loss_weight*loss_map.item(), reg_loss_weight*loss_x.item(), reg_loss_weight*loss_y.item(), reg_loss_weight*loss_nb_x.item(), reg_loss_weight*loss_nb_y.item())) logging.info('[Epoch {:d}/{:d}, Batch {:d}/{:d}] '.format( epoch, num_epochs-1, i, len(train_loader)-1, loss.item(), cls_loss_weight*loss_map.item(), reg_loss_weight*loss_x.item(), reg_loss_weight*loss_y.item(), reg_loss_weight*loss_nb_x.item(), reg_loss_weight*loss_nb_y.item())) else: print('No such head:', det_head) exit(0) epoch_loss += loss.item() epoch_loss /= len(train_loader) if epoch%(save_interval-1) == 0 and epoch > 0: filename = os.path.join(save_dir, 'epoch%d.pth' % epoch) torch.save(net.state_dict(), filename) print(filename, 'saved') scheduler.step() return net def forward_pip(net, inputs, preprocess, input_size, net_stride, num_nb): net.eval() with torch.no_grad(): outputs_cls1, outputs_cls2, outputs_cls3, outputs_x, outputs_y, outputs_nb_x, outputs_nb_y = net(inputs) tmp_batch, tmp_channel, tmp_height, tmp_width = outputs_cls1.size() assert tmp_batch == 1 outputs_cls1 = outputs_cls1.view(tmp_batch*tmp_channel, -1) max_ids = torch.argmax(outputs_cls1, 1) max_cls = torch.max(outputs_cls1, 1)[0] max_ids = max_ids.view(-1, 1) max_ids_nb = max_ids.repeat(1, num_nb).view(-1, 1) outputs_x = outputs_x.view(tmp_batch*tmp_channel, -1) outputs_x_select = torch.gather(outputs_x, 1, max_ids) outputs_x_select = outputs_x_select.squeeze(1) outputs_y = outputs_y.view(tmp_batch*tmp_channel, -1) outputs_y_select = torch.gather(outputs_y, 1, max_ids) outputs_y_select = outputs_y_select.squeeze(1) outputs_nb_x = outputs_nb_x.view(tmp_batch*num_nb*tmp_channel, -1) outputs_nb_x_select = torch.gather(outputs_nb_x, 1, max_ids_nb) outputs_nb_x_select = outputs_nb_x_select.squeeze(1).view(-1, num_nb) outputs_nb_y = outputs_nb_y.view(tmp_batch*num_nb*tmp_channel, -1) outputs_nb_y_select = torch.gather(outputs_nb_y, 1, max_ids_nb) outputs_nb_y_select = outputs_nb_y_select.squeeze(1).view(-1, num_nb) tmp_x = (max_ids%tmp_width).view(-1,1).float()+outputs_x_select.view(-1,1) tmp_y = (max_ids//tmp_width).view(-1,1).float()+outputs_y_select.view(-1,1) tmp_x /= 1.0 * input_size / net_stride tmp_y /= 1.0 * input_size / net_stride tmp_nb_x = (max_ids%tmp_width).view(-1,1).float()+outputs_nb_x_select tmp_nb_y = (max_ids//tmp_width).view(-1,1).float()+outputs_nb_y_select tmp_nb_x = tmp_nb_x.view(-1, num_nb) tmp_nb_y = tmp_nb_y.view(-1, num_nb) tmp_nb_x /= 1.0 * input_size / net_stride tmp_nb_y /= 1.0 * input_size / net_stride return tmp_x, tmp_y, tmp_nb_x, tmp_nb_y, [outputs_cls1, outputs_cls2, outputs_cls3], max_cls def compute_nme(lms_pred, lms_gt, norm): lms_pred = lms_pred.reshape((-1, 2)) lms_gt = lms_gt.reshape((-1, 2)) nme = np.mean(np.linalg.norm(lms_pred - lms_gt, axis=1)) / norm return nme