File size: 8,493 Bytes
4c45953
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import json
import os
import pprint
import time
from random import randint

import psutil
import streamlit as st
import torch
from transformers import (AutoModelForCausalLM, AutoTokenizer, pipeline,
                          set_seed)

device = torch.cuda.device_count() - 1


@st.cache(suppress_st_warning=True, allow_output_mutation=True)
def load_model(model_name):
    os.environ["TOKENIZERS_PARALLELISM"] = "false"
    try:
        if not os.path.exists(".streamlit/secrets.toml"):
            raise FileNotFoundError
        access_token = st.secrets.get("netherator")
    except FileNotFoundError:
        access_token = os.environ.get("HF_ACCESS_TOKEN", None)
    tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=access_token)
    model = AutoModelForCausalLM.from_pretrained(
        model_name, use_auth_token=access_token
    )
    if device != -1:
        model.to(f"cuda:{device}")
    return tokenizer, model


class StoryGenerator:
    def __init__(self, model_name):
        self.model_name = model_name
        self.tokenizer = None
        self.model = None
        self.generator = None
        self.model_loaded = False

    def load(self):
        if not self.model_loaded:
            self.tokenizer, self.model = load_model(self.model_name)
            self.generator = pipeline(
                "text-generation",
                model=self.model,
                tokenizer=self.tokenizer,
                device=device,
            )
            self.model_loaded = True

    def get_text(self, text: str, **generate_kwargs) -> str:
        return self.generator(text, **generate_kwargs)


STORY_GENERATORS = [
    {
        "model_name": "yhavinga/gpt-neo-125M-dutch-nedd",
        "desc": "Dutch GPTNeo Small",
        "story_generator": None,
    },
    {
        "model_name": "yhavinga/gpt2-medium-dutch-nedd",
        "desc": "Dutch GPT2 Medium",
        "story_generator": None,
    },
    # {
    #     "model_name": "yhavinga/gpt-neo-125M-dutch",
    #     "desc": "Dutch GPTNeo Small",
    #     "story_generator": None,
    # },
    # {
    #     "model_name": "yhavinga/gpt2-medium-dutch",
    #     "desc": "Dutch GPT2 Medium",
    #     "story_generator": None,
    # },
]


def instantiate_models():
    for sg in STORY_GENERATORS:
        sg["story_generator"] = StoryGenerator(sg["model_name"])
        with st.spinner(text=f"Loading the model {sg['desc']} ..."):
            sg["story_generator"].load()


def set_new_seed():
    seed = randint(0, 2 ** 32 - 1)
    set_seed(seed)
    return seed


def main():
    st.set_page_config(  # Alternate names: setup_page, page, layout
        page_title="Netherator",  # String or None. Strings get appended with "• Streamlit".
        layout="wide",  # Can be "centered" or "wide". In the future also "dashboard", etc.
        initial_sidebar_state="expanded",  # Can be "auto", "expanded", "collapsed"
        page_icon="📚",  # String, anything supported by st.image, or None.
    )
    instantiate_models()

    with open("style.css") as f:
        st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)

    st.sidebar.image("demon-reading-Stewart-Orr.png", width=200)

    st.sidebar.markdown(
        """# Netherator
Teller of tales from the Netherlands"""
    )

    model_desc = st.sidebar.selectbox(
        "Model", [sg["desc"] for sg in STORY_GENERATORS], index=1
    )

    st.sidebar.title("Parameters:")

    if "prompt_box" not in st.session_state:
        st.session_state["prompt_box"] = "Het was een koude winterdag"

    st.session_state["text"] = st.text_area("Enter text", st.session_state.prompt_box)

    # min_length = st.sidebar.number_input(
    #     "Min length", min_value=10, max_value=150, value=75
    # )
    max_length = st.sidebar.number_input(
        "Lengte van de tekst",
        value=300,
        max_value=512,
    )
    no_repeat_ngram_size = st.sidebar.number_input(
        "No-repeat NGram size", min_value=1, max_value=5, value=3
    )
    repetition_penalty = st.sidebar.number_input(
        "Repetition penalty", min_value=0.0, max_value=5.0, value=1.2, step=0.1
    )
    num_return_sequences = st.sidebar.number_input(
        "Num return sequences", min_value=1, max_value=5, value=1
    )

    if sampling_mode := st.sidebar.selectbox(
        "select a Mode", index=0, options=["Top-k Sampling", "Beam Search"]
    ):
        if sampling_mode == "Beam Search":
            num_beams = st.sidebar.number_input(
                "Num beams", min_value=1, max_value=10, value=4
            )
            length_penalty = st.sidebar.number_input(
                "Length penalty", min_value=0.0, max_value=5.0, value=1.5, step=0.1
            )
            params = {
                "max_length": max_length,
                "no_repeat_ngram_size": no_repeat_ngram_size,
                "repetition_penalty": repetition_penalty,
                "num_return_sequences": num_return_sequences,
                "num_beams": num_beams,
                "early_stopping": True,
                "length_penalty": length_penalty,
            }
        else:
            top_k = st.sidebar.number_input(
                "Top K", min_value=0, max_value=100, value=50
            )
            top_p = st.sidebar.number_input(
                "Top P", min_value=0.0, max_value=1.0, value=0.95, step=0.05
            )
            temperature = st.sidebar.number_input(
                "Temperature", min_value=0.05, max_value=1.0, value=0.8, step=0.05
            )
            params = {
                "max_length": max_length,
                "no_repeat_ngram_size": no_repeat_ngram_size,
                "repetition_penalty": repetition_penalty,
                "num_return_sequences": num_return_sequences,
                "do_sample": True,
                "top_k": top_k,
                "top_p": top_p,
                "temperature": temperature,
            }

    st.sidebar.markdown(
        """For an explanation of the parameters, head over to the [Huggingface blog post about text generation](https://huggingface.co/blog/how-to-generate)
and the [Huggingface text generation interface doc](https://huggingface.co/transformers/main_classes/model.html?highlight=generate#transformers.generation_utils.GenerationMixin.generate).
"""
    )

    if st.button("Run"):
        estimate = max_length / 18
        if device == -1:
            ## cpu
            estimate = estimate * (1 + 0.7 * (num_return_sequences - 1))
            if sampling_mode == "Beam Search":
                estimate = estimate * (1.1 + 0.3 * (num_beams - 1))
        else:
            ## gpu
            estimate = estimate * (1 + 0.1 * (num_return_sequences - 1))
            estimate = 0.5 + estimate / 5
            if sampling_mode == "Beam Search":
                estimate = estimate * (1.0 + 0.1 * (num_beams - 1))
        estimate = int(estimate)

        with st.spinner(
            text=f"Please wait ~ {estimate} second{'s' if estimate != 1 else ''} while getting results ..."
        ):
            memory = psutil.virtual_memory()
            story_generator = next(
                (
                    x["story_generator"]
                    for x in STORY_GENERATORS
                    if x["desc"] == model_desc
                ),
                None,
            )
            seed = set_new_seed()
            time_start = time.time()
            result = story_generator.get_text(text=st.session_state.text, **params)
            time_end = time.time()
            time_diff = time_end - time_start

            st.subheader("Result")
            for text in result:
                st.write(text.get("generated_text").replace("\n", "  \n"))

            # st.text("*Translation*")
            # translation = translate(result, "en", "nl")
            # st.write(translation.replace("\n", "  \n"))
            #
            info = f"""
            ---
            *Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB*        
            *Text generated using seed {seed} in {time_diff:.5} seconds*
            """
            st.write(info)

            params["seed"] = seed
            params["prompt"] = st.session_state.text
            params["model"] = story_generator.model_name
            params_text = json.dumps(params)
            print(params_text)
            st.json(params_text)


if __name__ == "__main__":
    main()