Spaces:
Sleeping
Sleeping
File size: 8,493 Bytes
4c45953 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import json
import os
import pprint
import time
from random import randint
import psutil
import streamlit as st
import torch
from transformers import (AutoModelForCausalLM, AutoTokenizer, pipeline,
set_seed)
device = torch.cuda.device_count() - 1
@st.cache(suppress_st_warning=True, allow_output_mutation=True)
def load_model(model_name):
os.environ["TOKENIZERS_PARALLELISM"] = "false"
try:
if not os.path.exists(".streamlit/secrets.toml"):
raise FileNotFoundError
access_token = st.secrets.get("netherator")
except FileNotFoundError:
access_token = os.environ.get("HF_ACCESS_TOKEN", None)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=access_token)
model = AutoModelForCausalLM.from_pretrained(
model_name, use_auth_token=access_token
)
if device != -1:
model.to(f"cuda:{device}")
return tokenizer, model
class StoryGenerator:
def __init__(self, model_name):
self.model_name = model_name
self.tokenizer = None
self.model = None
self.generator = None
self.model_loaded = False
def load(self):
if not self.model_loaded:
self.tokenizer, self.model = load_model(self.model_name)
self.generator = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
device=device,
)
self.model_loaded = True
def get_text(self, text: str, **generate_kwargs) -> str:
return self.generator(text, **generate_kwargs)
STORY_GENERATORS = [
{
"model_name": "yhavinga/gpt-neo-125M-dutch-nedd",
"desc": "Dutch GPTNeo Small",
"story_generator": None,
},
{
"model_name": "yhavinga/gpt2-medium-dutch-nedd",
"desc": "Dutch GPT2 Medium",
"story_generator": None,
},
# {
# "model_name": "yhavinga/gpt-neo-125M-dutch",
# "desc": "Dutch GPTNeo Small",
# "story_generator": None,
# },
# {
# "model_name": "yhavinga/gpt2-medium-dutch",
# "desc": "Dutch GPT2 Medium",
# "story_generator": None,
# },
]
def instantiate_models():
for sg in STORY_GENERATORS:
sg["story_generator"] = StoryGenerator(sg["model_name"])
with st.spinner(text=f"Loading the model {sg['desc']} ..."):
sg["story_generator"].load()
def set_new_seed():
seed = randint(0, 2 ** 32 - 1)
set_seed(seed)
return seed
def main():
st.set_page_config( # Alternate names: setup_page, page, layout
page_title="Netherator", # String or None. Strings get appended with "• Streamlit".
layout="wide", # Can be "centered" or "wide". In the future also "dashboard", etc.
initial_sidebar_state="expanded", # Can be "auto", "expanded", "collapsed"
page_icon="📚", # String, anything supported by st.image, or None.
)
instantiate_models()
with open("style.css") as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
st.sidebar.image("demon-reading-Stewart-Orr.png", width=200)
st.sidebar.markdown(
"""# Netherator
Teller of tales from the Netherlands"""
)
model_desc = st.sidebar.selectbox(
"Model", [sg["desc"] for sg in STORY_GENERATORS], index=1
)
st.sidebar.title("Parameters:")
if "prompt_box" not in st.session_state:
st.session_state["prompt_box"] = "Het was een koude winterdag"
st.session_state["text"] = st.text_area("Enter text", st.session_state.prompt_box)
# min_length = st.sidebar.number_input(
# "Min length", min_value=10, max_value=150, value=75
# )
max_length = st.sidebar.number_input(
"Lengte van de tekst",
value=300,
max_value=512,
)
no_repeat_ngram_size = st.sidebar.number_input(
"No-repeat NGram size", min_value=1, max_value=5, value=3
)
repetition_penalty = st.sidebar.number_input(
"Repetition penalty", min_value=0.0, max_value=5.0, value=1.2, step=0.1
)
num_return_sequences = st.sidebar.number_input(
"Num return sequences", min_value=1, max_value=5, value=1
)
if sampling_mode := st.sidebar.selectbox(
"select a Mode", index=0, options=["Top-k Sampling", "Beam Search"]
):
if sampling_mode == "Beam Search":
num_beams = st.sidebar.number_input(
"Num beams", min_value=1, max_value=10, value=4
)
length_penalty = st.sidebar.number_input(
"Length penalty", min_value=0.0, max_value=5.0, value=1.5, step=0.1
)
params = {
"max_length": max_length,
"no_repeat_ngram_size": no_repeat_ngram_size,
"repetition_penalty": repetition_penalty,
"num_return_sequences": num_return_sequences,
"num_beams": num_beams,
"early_stopping": True,
"length_penalty": length_penalty,
}
else:
top_k = st.sidebar.number_input(
"Top K", min_value=0, max_value=100, value=50
)
top_p = st.sidebar.number_input(
"Top P", min_value=0.0, max_value=1.0, value=0.95, step=0.05
)
temperature = st.sidebar.number_input(
"Temperature", min_value=0.05, max_value=1.0, value=0.8, step=0.05
)
params = {
"max_length": max_length,
"no_repeat_ngram_size": no_repeat_ngram_size,
"repetition_penalty": repetition_penalty,
"num_return_sequences": num_return_sequences,
"do_sample": True,
"top_k": top_k,
"top_p": top_p,
"temperature": temperature,
}
st.sidebar.markdown(
"""For an explanation of the parameters, head over to the [Huggingface blog post about text generation](https://huggingface.co/blog/how-to-generate)
and the [Huggingface text generation interface doc](https://huggingface.co/transformers/main_classes/model.html?highlight=generate#transformers.generation_utils.GenerationMixin.generate).
"""
)
if st.button("Run"):
estimate = max_length / 18
if device == -1:
## cpu
estimate = estimate * (1 + 0.7 * (num_return_sequences - 1))
if sampling_mode == "Beam Search":
estimate = estimate * (1.1 + 0.3 * (num_beams - 1))
else:
## gpu
estimate = estimate * (1 + 0.1 * (num_return_sequences - 1))
estimate = 0.5 + estimate / 5
if sampling_mode == "Beam Search":
estimate = estimate * (1.0 + 0.1 * (num_beams - 1))
estimate = int(estimate)
with st.spinner(
text=f"Please wait ~ {estimate} second{'s' if estimate != 1 else ''} while getting results ..."
):
memory = psutil.virtual_memory()
story_generator = next(
(
x["story_generator"]
for x in STORY_GENERATORS
if x["desc"] == model_desc
),
None,
)
seed = set_new_seed()
time_start = time.time()
result = story_generator.get_text(text=st.session_state.text, **params)
time_end = time.time()
time_diff = time_end - time_start
st.subheader("Result")
for text in result:
st.write(text.get("generated_text").replace("\n", " \n"))
# st.text("*Translation*")
# translation = translate(result, "en", "nl")
# st.write(translation.replace("\n", " \n"))
#
info = f"""
---
*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB*
*Text generated using seed {seed} in {time_diff:.5} seconds*
"""
st.write(info)
params["seed"] = seed
params["prompt"] = st.session_state.text
params["model"] = story_generator.model_name
params_text = json.dumps(params)
print(params_text)
st.json(params_text)
if __name__ == "__main__":
main()
|