netherator / app.py
yhavinga's picture
Unpin streamlit, update cache function usage
6202886
raw
history blame
11.4 kB
import json
import os
import time
from random import randint
import psutil
import streamlit as st
import torch
from transformers import (
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
AutoTokenizer,
TextIteratorStreamer,
pipeline,
set_seed,
)
device = torch.cuda.device_count() - 1
TRANSLATION_NL_TO_EN = "translation_en_to_nl"
@st.cache_resource()
def load_model(model_name, task):
os.environ["TOKENIZERS_PARALLELISM"] = "false"
try:
if not os.path.exists(".streamlit/secrets.toml"):
raise FileNotFoundError
access_token = st.secrets.get("netherator")
except FileNotFoundError:
access_token = os.environ.get("HF_ACCESS_TOKEN", None)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=access_token)
if tokenizer.pad_token is None:
print("Adding pad_token to the tokenizer")
tokenizer.pad_token = tokenizer.eos_token
auto_model_class = (
AutoModelForSeq2SeqLM if "translation" in task else AutoModelForCausalLM
)
model = auto_model_class.from_pretrained(model_name, use_auth_token=access_token)
if device != -1:
model.to(f"cuda:{device}")
return tokenizer, model
class StreamlitTextIteratorStreamer(TextIteratorStreamer):
def __init__(
self, output_placeholder, tokenizer, skip_prompt=False, **decode_kwargs
):
super().__init__(tokenizer, skip_prompt, **decode_kwargs)
self.output_placeholder = output_placeholder
self.output_text = ""
def on_finalized_text(self, text: str, stream_end: bool = False):
self.output_text += text
self.output_placeholder.markdown(self.output_text, unsafe_allow_html=True)
super().on_finalized_text(text, stream_end)
class Generator:
def __init__(self, model_name, task, desc):
self.model_name = model_name
self.task = task
self.desc = desc
self.tokenizer = None
self.model = None
self.pipeline = None
self.load()
def load(self):
if not self.model:
print(f"Loading model {self.model_name}")
self.tokenizer, self.model = load_model(self.model_name, self.task)
def generate(self, text: str, streamer=None, **generate_kwargs) -> (str, dict):
batch_encoded = self.tokenizer(
text,
max_length=generate_kwargs["max_length"],
padding=False,
truncation=False,
return_tensors="pt",
)
if device != -1:
batch_encoded.to(f"cuda:{device}")
logits = self.model.generate(
batch_encoded["input_ids"],
attention_mask=batch_encoded["attention_mask"],
streamer=streamer,
**generate_kwargs,
)
decoded_preds = self.tokenizer.batch_decode(
logits.cpu().numpy(), skip_special_tokens=False
)
def replace_tokens(pred):
pred = pred.replace("<pad> ", "").replace("<pad>", "").replace("</s>", "")
if hasattr(self.tokenizer, "newline_token"):
pred = pred.replace(self.tokenizer.newline_token, "\n")
return pred
decoded_preds = list(map(replace_tokens, decoded_preds))
return decoded_preds[0], generate_kwargs
class GeneratorFactory:
def __init__(self):
self.generators = []
def instantiate_generators(self):
GENERATOR_LIST = [
{
"model_name": "yhavinga/gpt-neo-125M-dutch-nedd",
"desc": "GPT-Neo Small Dutch(book finetune)",
"task": "text-generation",
},
{
"model_name": "yhavinga/gpt2-medium-dutch-nedd",
"desc": "GPT2 Medium Dutch (book finetune)",
"task": "text-generation",
},
# {
# "model_name": "yhavinga/t5-small-24L-ccmatrix-multi",
# "desc": "Dutch<->English T5 small 24 layers",
# "task": TRANSLATION_NL_TO_EN,
# },
]
for g in GENERATOR_LIST:
with st.spinner(text=f"Loading the model {g['desc']} ..."):
self.add_generator(**g)
return self
def add_generator(self, model_name, task, desc):
# If the generator is not yet present, add it
if not self.get_generator(model_name=model_name, task=task, desc=desc):
g = Generator(model_name, task, desc)
g.load()
self.generators.append(g)
def get_generator(self, **kwargs):
for g in self.generators:
if all([g.__dict__.get(k) == v for k, v in kwargs.items()]):
return g
return None
def gpt_descs(self):
return [g.desc for g in self.generators if g.task == "text-generation"]
def main():
st.set_page_config( # Alternate names: setup_page, page, layout
page_title="Netherator", # String or None. Strings get appended with "• Streamlit".
layout="wide", # Can be "centered" or "wide". In the future also "dashboard", etc.
initial_sidebar_state="expanded", # Can be "auto", "expanded", "collapsed"
page_icon="📚", # String, anything supported by st.image, or None.
)
if "generators" not in st.session_state:
st.session_state["generators"] = GeneratorFactory().instantiate_generators()
generators = st.session_state["generators"]
with open("style.css") as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
st.sidebar.image("demon-reading-Stewart-Orr.png", width=200)
st.sidebar.markdown(
"""# Netherator
Nederlandse verhalenverteller"""
)
model_desc = st.sidebar.selectbox("Model", generators.gpt_descs(), index=1)
st.sidebar.title("Parameters:")
if "prompt_box" not in st.session_state:
st.session_state["prompt_box"] = "Het was een koude winterdag"
st.session_state["text"] = st.text_area("Enter text", st.session_state.prompt_box)
max_length = st.sidebar.number_input(
"Lengte van de tekst",
value=200,
max_value=512,
)
no_repeat_ngram_size = st.sidebar.number_input(
"No-repeat NGram size", min_value=1, max_value=5, value=3
)
repetition_penalty = st.sidebar.number_input(
"Repetition penalty", min_value=0.0, max_value=5.0, value=1.2, step=0.1
)
num_return_sequences = 1
# st.sidebar.number_input(
# "Num return sequences", min_value=1, max_value=5, value=1
# )
seed_placeholder = st.sidebar.empty()
if "seed" not in st.session_state:
print(f"Session state does not contain seed")
st.session_state["seed"] = 4162549114
print(f"Seed is set to: {st.session_state['seed']}")
seed = seed_placeholder.number_input(
"Seed", min_value=0, max_value=2**32 - 1, value=st.session_state["seed"]
)
def set_random_seed():
st.session_state["seed"] = randint(0, 2**32 - 1)
seed = seed_placeholder.number_input(
"Seed", min_value=0, max_value=2**32 - 1, value=st.session_state["seed"]
)
print(f"New random seed set to: {seed}")
if st.button("New random seed?"):
set_random_seed()
if sampling_mode := st.sidebar.selectbox(
"select a Mode", index=0, options=["Top-k Sampling", "Beam Search"]
):
if sampling_mode == "Beam Search":
num_beams = st.sidebar.number_input(
"Num beams", min_value=1, max_value=10, value=4
)
length_penalty = st.sidebar.number_input(
"Length penalty", min_value=0.0, max_value=2.0, value=1.0, step=0.1
)
params = {
"max_length": max_length,
"no_repeat_ngram_size": no_repeat_ngram_size,
"repetition_penalty": repetition_penalty,
"num_return_sequences": num_return_sequences,
"num_beams": num_beams,
"early_stopping": True,
"length_penalty": length_penalty,
}
else:
top_k = st.sidebar.number_input(
"Top K", min_value=0, max_value=100, value=50
)
top_p = st.sidebar.number_input(
"Top P", min_value=0.0, max_value=1.0, value=0.95, step=0.05
)
temperature = st.sidebar.number_input(
"Temperature", min_value=0.05, max_value=1.0, value=1.0, step=0.05
)
params = {
"max_length": max_length,
"no_repeat_ngram_size": no_repeat_ngram_size,
"repetition_penalty": repetition_penalty,
"num_return_sequences": num_return_sequences,
"do_sample": True,
"top_k": top_k,
"top_p": top_p,
"temperature": temperature,
}
st.sidebar.markdown(
"""For an explanation of the parameters, head over to the [Huggingface blog post about text generation](https://huggingface.co/blog/how-to-generate)
and the [Huggingface text generation interface doc](https://huggingface.co/transformers/main_classes/model.html?highlight=generate#transformers.generation_utils.GenerationMixin.generate).
"""
)
if st.button("Run"):
memory = psutil.virtual_memory()
st.subheader("Result")
container = st.container()
output_placeholder = container.empty()
streaming_enabled = True # sampling_mode != "Beam Search" or num_beams == 1
generator = generators.get_generator(desc=model_desc)
streamer = (
StreamlitTextIteratorStreamer(output_placeholder, generator.tokenizer)
if streaming_enabled
else None
)
set_seed(seed)
time_start = time.time()
result = generator.generate(
text=st.session_state.text, streamer=streamer, **params
)
time_end = time.time()
time_diff = time_end - time_start
# for text in result:
# st.write(text.get("generated_text").replace("\n", " \n"))
# st.text("*Translation*")
# translate_params = {
# "num_return_sequences": 1,
# "num_beams": 4,
# "early_stopping": True,
# "length_penalty": 1.1,
# "max_length": 200,
# }
# text_lines = [
# "translate Dutch to English: " + t
# for t in text.get("generated_text").splitlines()
# ]
# translated_lines = [
# t["translation_text"]
# for t in generators.get_generator(
# task=TRANSLATION_NL_TO_EN
# ).get_text(text_lines, **translate_params)
# ]
# translation = " \n".join(translated_lines)
# st.write(translation)
# st.write("---")
#
info = f"""
---
*Memory: {memory.total / 10**9:.2f}GB, used: {memory.percent}%, available: {memory.available / 10**9:.2f}GB*
*Text generated using seed {seed} in {time_diff:.5} seconds*
"""
st.write(info)
params["seed"] = seed
params["prompt"] = st.session_state.text
params["model"] = generator.model_name
params_text = json.dumps(params)
# print(params_text)
st.json(params_text)
if __name__ == "__main__":
main()