Spaces:
Sleeping
Sleeping
Yeb Havinga
commited on
Commit
·
a9f2b23
1
Parent(s):
4c45953
Syntactic changes
Browse files
app.py
CHANGED
@@ -1,20 +1,24 @@
|
|
1 |
import json
|
2 |
import os
|
3 |
-
import pprint
|
4 |
import time
|
5 |
from random import randint
|
6 |
|
7 |
import psutil
|
8 |
import streamlit as st
|
9 |
import torch
|
10 |
-
from transformers import (
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
device = torch.cuda.device_count() - 1
|
14 |
|
15 |
|
16 |
@st.cache(suppress_st_warning=True, allow_output_mutation=True)
|
17 |
-
def load_model(model_name):
|
18 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
19 |
try:
|
20 |
if not os.path.exists(".streamlit/secrets.toml"):
|
@@ -23,70 +27,68 @@ def load_model(model_name):
|
|
23 |
except FileNotFoundError:
|
24 |
access_token = os.environ.get("HF_ACCESS_TOKEN", None)
|
25 |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=access_token)
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
28 |
)
|
|
|
29 |
if device != -1:
|
30 |
model.to(f"cuda:{device}")
|
31 |
return tokenizer, model
|
32 |
|
33 |
|
34 |
-
class
|
35 |
-
def __init__(self,
|
36 |
-
self.model_name = model_name
|
|
|
|
|
37 |
self.tokenizer = None
|
38 |
self.model = None
|
39 |
-
self.
|
40 |
-
self.
|
41 |
|
42 |
def load(self):
|
43 |
-
if not self.
|
44 |
-
|
45 |
-
self.
|
46 |
-
|
|
|
47 |
model=self.model,
|
48 |
tokenizer=self.tokenizer,
|
49 |
device=device,
|
50 |
)
|
51 |
-
self.model_loaded = True
|
52 |
|
53 |
def get_text(self, text: str, **generate_kwargs) -> str:
|
54 |
-
return self.
|
55 |
|
56 |
|
57 |
-
|
58 |
{
|
59 |
"model_name": "yhavinga/gpt-neo-125M-dutch-nedd",
|
60 |
"desc": "Dutch GPTNeo Small",
|
61 |
-
"
|
|
|
62 |
},
|
63 |
{
|
64 |
"model_name": "yhavinga/gpt2-medium-dutch-nedd",
|
65 |
"desc": "Dutch GPT2 Medium",
|
66 |
-
"
|
|
|
67 |
},
|
68 |
-
# {
|
69 |
-
# "model_name": "yhavinga/gpt-neo-125M-dutch",
|
70 |
-
# "desc": "Dutch GPTNeo Small",
|
71 |
-
# "story_generator": None,
|
72 |
-
# },
|
73 |
-
# {
|
74 |
-
# "model_name": "yhavinga/gpt2-medium-dutch",
|
75 |
-
# "desc": "Dutch GPT2 Medium",
|
76 |
-
# "story_generator": None,
|
77 |
-
# },
|
78 |
]
|
79 |
|
80 |
|
81 |
def instantiate_models():
|
82 |
-
for
|
83 |
-
|
84 |
-
with st.spinner(text=f"Loading the model {
|
85 |
-
|
86 |
|
87 |
|
88 |
def set_new_seed():
|
89 |
-
seed = randint(0, 2
|
90 |
set_seed(seed)
|
91 |
return seed
|
92 |
|
@@ -104,14 +106,13 @@ def main():
|
|
104 |
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
|
105 |
|
106 |
st.sidebar.image("demon-reading-Stewart-Orr.png", width=200)
|
107 |
-
|
108 |
st.sidebar.markdown(
|
109 |
"""# Netherator
|
110 |
-
|
111 |
)
|
112 |
|
113 |
model_desc = st.sidebar.selectbox(
|
114 |
-
"Model", [
|
115 |
)
|
116 |
|
117 |
st.sidebar.title("Parameters:")
|
@@ -126,7 +127,7 @@ Teller of tales from the Netherlands"""
|
|
126 |
# )
|
127 |
max_length = st.sidebar.number_input(
|
128 |
"Lengte van de tekst",
|
129 |
-
value=
|
130 |
max_value=512,
|
131 |
)
|
132 |
no_repeat_ngram_size = st.sidebar.number_input(
|
@@ -147,7 +148,7 @@ Teller of tales from the Netherlands"""
|
|
147 |
"Num beams", min_value=1, max_value=10, value=4
|
148 |
)
|
149 |
length_penalty = st.sidebar.number_input(
|
150 |
-
"Length penalty", min_value=0.0, max_value=
|
151 |
)
|
152 |
params = {
|
153 |
"max_length": max_length,
|
@@ -159,14 +160,12 @@ Teller of tales from the Netherlands"""
|
|
159 |
"length_penalty": length_penalty,
|
160 |
}
|
161 |
else:
|
162 |
-
top_k = st.sidebar.number_input(
|
163 |
-
"Top K", min_value=0, max_value=100, value=50
|
164 |
-
)
|
165 |
top_p = st.sidebar.number_input(
|
166 |
"Top P", min_value=0.0, max_value=1.0, value=0.95, step=0.05
|
167 |
)
|
168 |
temperature = st.sidebar.number_input(
|
169 |
-
"Temperature", min_value=0.05, max_value=1.0, value=0
|
170 |
)
|
171 |
params = {
|
172 |
"max_length": max_length,
|
@@ -204,17 +203,17 @@ and the [Huggingface text generation interface doc](https://huggingface.co/trans
|
|
204 |
text=f"Please wait ~ {estimate} second{'s' if estimate != 1 else ''} while getting results ..."
|
205 |
):
|
206 |
memory = psutil.virtual_memory()
|
207 |
-
|
208 |
(
|
209 |
-
x["
|
210 |
-
for x in
|
211 |
if x["desc"] == model_desc
|
212 |
),
|
213 |
None,
|
214 |
)
|
215 |
seed = set_new_seed()
|
216 |
time_start = time.time()
|
217 |
-
result =
|
218 |
time_end = time.time()
|
219 |
time_diff = time_end - time_start
|
220 |
|
@@ -235,7 +234,7 @@ and the [Huggingface text generation interface doc](https://huggingface.co/trans
|
|
235 |
|
236 |
params["seed"] = seed
|
237 |
params["prompt"] = st.session_state.text
|
238 |
-
params["model"] =
|
239 |
params_text = json.dumps(params)
|
240 |
print(params_text)
|
241 |
st.json(params_text)
|
|
|
1 |
import json
|
2 |
import os
|
|
|
3 |
import time
|
4 |
from random import randint
|
5 |
|
6 |
import psutil
|
7 |
import streamlit as st
|
8 |
import torch
|
9 |
+
from transformers import (
|
10 |
+
AutoModelForCausalLM,
|
11 |
+
AutoModelForSeq2SeqLM,
|
12 |
+
AutoTokenizer,
|
13 |
+
pipeline,
|
14 |
+
set_seed,
|
15 |
+
)
|
16 |
|
17 |
device = torch.cuda.device_count() - 1
|
18 |
|
19 |
|
20 |
@st.cache(suppress_st_warning=True, allow_output_mutation=True)
|
21 |
+
def load_model(model_name, task):
|
22 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
23 |
try:
|
24 |
if not os.path.exists(".streamlit/secrets.toml"):
|
|
|
27 |
except FileNotFoundError:
|
28 |
access_token = os.environ.get("HF_ACCESS_TOKEN", None)
|
29 |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=access_token)
|
30 |
+
if tokenizer.pad_token is None:
|
31 |
+
print("Adding pad_token to the tokenizer")
|
32 |
+
tokenizer.pad_token = tokenizer.eos_token
|
33 |
+
auto_model_class = (
|
34 |
+
AutoModelForSeq2SeqLM if "translation" in task else AutoModelForCausalLM
|
35 |
)
|
36 |
+
model = auto_model_class.from_pretrained(model_name, use_auth_token=access_token)
|
37 |
if device != -1:
|
38 |
model.to(f"cuda:{device}")
|
39 |
return tokenizer, model
|
40 |
|
41 |
|
42 |
+
class ModelTask:
|
43 |
+
def __init__(self, p):
|
44 |
+
self.model_name = p["model_name"]
|
45 |
+
self.task = p["task"]
|
46 |
+
self.desc = p["desc"]
|
47 |
self.tokenizer = None
|
48 |
self.model = None
|
49 |
+
self.pipeline = None
|
50 |
+
self.load()
|
51 |
|
52 |
def load(self):
|
53 |
+
if not self.pipeline:
|
54 |
+
print(f"Loading model {self.model_name}")
|
55 |
+
self.tokenizer, self.model = load_model(self.model_name, self.task)
|
56 |
+
self.pipeline = pipeline(
|
57 |
+
task=self.task,
|
58 |
model=self.model,
|
59 |
tokenizer=self.tokenizer,
|
60 |
device=device,
|
61 |
)
|
|
|
62 |
|
63 |
def get_text(self, text: str, **generate_kwargs) -> str:
|
64 |
+
return self.pipeline(text, **generate_kwargs)
|
65 |
|
66 |
|
67 |
+
PIPELINES = [
|
68 |
{
|
69 |
"model_name": "yhavinga/gpt-neo-125M-dutch-nedd",
|
70 |
"desc": "Dutch GPTNeo Small",
|
71 |
+
"task": "text-generation",
|
72 |
+
"pipeline": None,
|
73 |
},
|
74 |
{
|
75 |
"model_name": "yhavinga/gpt2-medium-dutch-nedd",
|
76 |
"desc": "Dutch GPT2 Medium",
|
77 |
+
"task": "text-generation",
|
78 |
+
"pipeline": None,
|
79 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
]
|
81 |
|
82 |
|
83 |
def instantiate_models():
|
84 |
+
for p in PIPELINES:
|
85 |
+
p["pipeline"] = ModelTask(p)
|
86 |
+
with st.spinner(text=f"Loading the model {p['desc']} ..."):
|
87 |
+
p["pipeline"].load()
|
88 |
|
89 |
|
90 |
def set_new_seed():
|
91 |
+
seed = randint(0, 2**32 - 1)
|
92 |
set_seed(seed)
|
93 |
return seed
|
94 |
|
|
|
106 |
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
|
107 |
|
108 |
st.sidebar.image("demon-reading-Stewart-Orr.png", width=200)
|
|
|
109 |
st.sidebar.markdown(
|
110 |
"""# Netherator
|
111 |
+
Nederlandse verhalenverteller"""
|
112 |
)
|
113 |
|
114 |
model_desc = st.sidebar.selectbox(
|
115 |
+
"Model", [p["desc"] for p in PIPELINES], index=1
|
116 |
)
|
117 |
|
118 |
st.sidebar.title("Parameters:")
|
|
|
127 |
# )
|
128 |
max_length = st.sidebar.number_input(
|
129 |
"Lengte van de tekst",
|
130 |
+
value=200,
|
131 |
max_value=512,
|
132 |
)
|
133 |
no_repeat_ngram_size = st.sidebar.number_input(
|
|
|
148 |
"Num beams", min_value=1, max_value=10, value=4
|
149 |
)
|
150 |
length_penalty = st.sidebar.number_input(
|
151 |
+
"Length penalty", min_value=0.0, max_value=2.0, value=1.0, step=0.1
|
152 |
)
|
153 |
params = {
|
154 |
"max_length": max_length,
|
|
|
160 |
"length_penalty": length_penalty,
|
161 |
}
|
162 |
else:
|
163 |
+
top_k = st.sidebar.number_input("Top K", min_value=0, max_value=100, value=50)
|
|
|
|
|
164 |
top_p = st.sidebar.number_input(
|
165 |
"Top P", min_value=0.0, max_value=1.0, value=0.95, step=0.05
|
166 |
)
|
167 |
temperature = st.sidebar.number_input(
|
168 |
+
"Temperature", min_value=0.05, max_value=1.0, value=1.0, step=0.05
|
169 |
)
|
170 |
params = {
|
171 |
"max_length": max_length,
|
|
|
203 |
text=f"Please wait ~ {estimate} second{'s' if estimate != 1 else ''} while getting results ..."
|
204 |
):
|
205 |
memory = psutil.virtual_memory()
|
206 |
+
generator = next(
|
207 |
(
|
208 |
+
x["pipeline"]
|
209 |
+
for x in PIPELINES
|
210 |
if x["desc"] == model_desc
|
211 |
),
|
212 |
None,
|
213 |
)
|
214 |
seed = set_new_seed()
|
215 |
time_start = time.time()
|
216 |
+
result = generator.get_text(text=st.session_state.text, **params)
|
217 |
time_end = time.time()
|
218 |
time_diff = time_end - time_start
|
219 |
|
|
|
234 |
|
235 |
params["seed"] = seed
|
236 |
params["prompt"] = st.session_state.text
|
237 |
+
params["model"] = generator.model_name
|
238 |
params_text = json.dumps(params)
|
239 |
print(params_text)
|
240 |
st.json(params_text)
|