import json import os import pprint import time from random import randint import psutil import streamlit as st import torch from transformers import (AutoModelForCausalLM, AutoTokenizer, pipeline, set_seed) device = torch.cuda.device_count() - 1 @st.cache(suppress_st_warning=True, allow_output_mutation=True) def load_model(model_name): os.environ["TOKENIZERS_PARALLELISM"] = "false" try: if not os.path.exists(".streamlit/secrets.toml"): raise FileNotFoundError access_token = st.secrets.get("netherator") except FileNotFoundError: access_token = os.environ.get("HF_ACCESS_TOKEN", None) tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=access_token) model = AutoModelForCausalLM.from_pretrained( model_name, use_auth_token=access_token ) if device != -1: model.to(f"cuda:{device}") return tokenizer, model class StoryGenerator: def __init__(self, model_name): self.model_name = model_name self.tokenizer = None self.model = None self.generator = None self.model_loaded = False def load(self): if not self.model_loaded: self.tokenizer, self.model = load_model(self.model_name) self.generator = pipeline( "text-generation", model=self.model, tokenizer=self.tokenizer, device=device, ) self.model_loaded = True def get_text(self, text: str, **generate_kwargs) -> str: return self.generator(text, **generate_kwargs) STORY_GENERATORS = [ { "model_name": "yhavinga/gpt-neo-125M-dutch-nedd", "desc": "Dutch GPTNeo Small", "story_generator": None, }, { "model_name": "yhavinga/gpt2-medium-dutch-nedd", "desc": "Dutch GPT2 Medium", "story_generator": None, }, # { # "model_name": "yhavinga/gpt-neo-125M-dutch", # "desc": "Dutch GPTNeo Small", # "story_generator": None, # }, # { # "model_name": "yhavinga/gpt2-medium-dutch", # "desc": "Dutch GPT2 Medium", # "story_generator": None, # }, ] def instantiate_models(): for sg in STORY_GENERATORS: sg["story_generator"] = StoryGenerator(sg["model_name"]) with st.spinner(text=f"Loading the model {sg['desc']} ..."): sg["story_generator"].load() def set_new_seed(): seed = randint(0, 2 ** 32 - 1) set_seed(seed) return seed def main(): st.set_page_config( # Alternate names: setup_page, page, layout page_title="Netherator", # String or None. Strings get appended with "• Streamlit". layout="wide", # Can be "centered" or "wide". In the future also "dashboard", etc. initial_sidebar_state="expanded", # Can be "auto", "expanded", "collapsed" page_icon="📚", # String, anything supported by st.image, or None. ) instantiate_models() with open("style.css") as f: st.markdown(f"", unsafe_allow_html=True) st.sidebar.image("demon-reading-Stewart-Orr.png", width=200) st.sidebar.markdown( """# Netherator Teller of tales from the Netherlands""" ) model_desc = st.sidebar.selectbox( "Model", [sg["desc"] for sg in STORY_GENERATORS], index=1 ) st.sidebar.title("Parameters:") if "prompt_box" not in st.session_state: st.session_state["prompt_box"] = "Het was een koude winterdag" st.session_state["text"] = st.text_area("Enter text", st.session_state.prompt_box) # min_length = st.sidebar.number_input( # "Min length", min_value=10, max_value=150, value=75 # ) max_length = st.sidebar.number_input( "Lengte van de tekst", value=300, max_value=512, ) no_repeat_ngram_size = st.sidebar.number_input( "No-repeat NGram size", min_value=1, max_value=5, value=3 ) repetition_penalty = st.sidebar.number_input( "Repetition penalty", min_value=0.0, max_value=5.0, value=1.2, step=0.1 ) num_return_sequences = st.sidebar.number_input( "Num return sequences", min_value=1, max_value=5, value=1 ) if sampling_mode := st.sidebar.selectbox( "select a Mode", index=0, options=["Top-k Sampling", "Beam Search"] ): if sampling_mode == "Beam Search": num_beams = st.sidebar.number_input( "Num beams", min_value=1, max_value=10, value=4 ) length_penalty = st.sidebar.number_input( "Length penalty", min_value=0.0, max_value=5.0, value=1.5, step=0.1 ) params = { "max_length": max_length, "no_repeat_ngram_size": no_repeat_ngram_size, "repetition_penalty": repetition_penalty, "num_return_sequences": num_return_sequences, "num_beams": num_beams, "early_stopping": True, "length_penalty": length_penalty, } else: top_k = st.sidebar.number_input( "Top K", min_value=0, max_value=100, value=50 ) top_p = st.sidebar.number_input( "Top P", min_value=0.0, max_value=1.0, value=0.95, step=0.05 ) temperature = st.sidebar.number_input( "Temperature", min_value=0.05, max_value=1.0, value=0.8, step=0.05 ) params = { "max_length": max_length, "no_repeat_ngram_size": no_repeat_ngram_size, "repetition_penalty": repetition_penalty, "num_return_sequences": num_return_sequences, "do_sample": True, "top_k": top_k, "top_p": top_p, "temperature": temperature, } st.sidebar.markdown( """For an explanation of the parameters, head over to the [Huggingface blog post about text generation](https://huggingface.co/blog/how-to-generate) and the [Huggingface text generation interface doc](https://huggingface.co/transformers/main_classes/model.html?highlight=generate#transformers.generation_utils.GenerationMixin.generate). """ ) if st.button("Run"): estimate = max_length / 18 if device == -1: ## cpu estimate = estimate * (1 + 0.7 * (num_return_sequences - 1)) if sampling_mode == "Beam Search": estimate = estimate * (1.1 + 0.3 * (num_beams - 1)) else: ## gpu estimate = estimate * (1 + 0.1 * (num_return_sequences - 1)) estimate = 0.5 + estimate / 5 if sampling_mode == "Beam Search": estimate = estimate * (1.0 + 0.1 * (num_beams - 1)) estimate = int(estimate) with st.spinner( text=f"Please wait ~ {estimate} second{'s' if estimate != 1 else ''} while getting results ..." ): memory = psutil.virtual_memory() story_generator = next( ( x["story_generator"] for x in STORY_GENERATORS if x["desc"] == model_desc ), None, ) seed = set_new_seed() time_start = time.time() result = story_generator.get_text(text=st.session_state.text, **params) time_end = time.time() time_diff = time_end - time_start st.subheader("Result") for text in result: st.write(text.get("generated_text").replace("\n", " \n")) # st.text("*Translation*") # translation = translate(result, "en", "nl") # st.write(translation.replace("\n", " \n")) # info = f""" --- *Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB* *Text generated using seed {seed} in {time_diff:.5} seconds* """ st.write(info) params["seed"] = seed params["prompt"] = st.session_state.text params["model"] = story_generator.model_name params_text = json.dumps(params) print(params_text) st.json(params_text) if __name__ == "__main__": main()