add gradio app
Browse files
README.md
CHANGED
@@ -74,7 +74,7 @@ python demo.py --load configs/final.yaml --resume checkpoint-path
|
|
74 |
```
|
75 |
|
76 |
By default, it evaluates all `.jpg` files in the `demo` folder, and saves the
|
77 |
-
detection result in `tmp
|
78 |
|
79 |
|
80 |
|
|
|
74 |
```
|
75 |
|
76 |
By default, it evaluates all `.jpg` files in the `demo` folder, and saves the
|
77 |
+
detection result in `tmp`, with manipulation probablities appended to the file names.
|
78 |
|
79 |
|
80 |
|
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from albumentations.pytorch.functional import img_to_tensor
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
+
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
9 |
+
from torchvision.utils import draw_segmentation_masks, make_grid, save_image
|
10 |
+
|
11 |
+
import utils.misc as misc
|
12 |
+
from models import get_ensemble_model
|
13 |
+
from opt import get_opt
|
14 |
+
|
15 |
+
|
16 |
+
def greet(input_image):
|
17 |
+
opt, model = _get_model()
|
18 |
+
|
19 |
+
with torch.no_grad():
|
20 |
+
image = input_image
|
21 |
+
image = np.array(image)
|
22 |
+
dsm_image = torch.from_numpy(image).permute(2, 0, 1)
|
23 |
+
image_size = image.shape[:2]
|
24 |
+
image = img_to_tensor(
|
25 |
+
image,
|
26 |
+
normalize={"mean": IMAGENET_DEFAULT_MEAN, "std": IMAGENET_DEFAULT_STD},
|
27 |
+
)
|
28 |
+
image = image.to(opt.device).unsqueeze(0)
|
29 |
+
outputs = model(image, seg_size=image_size)
|
30 |
+
out_map = outputs["ensemble"]["out_map"][0, ...].detach().cpu()
|
31 |
+
pred = outputs["ensemble"]["out_map"].max().item()
|
32 |
+
if pred > opt.mask_threshold:
|
33 |
+
output_string = f"Found manipulation (manipulation probability {pred:.2f})."
|
34 |
+
else:
|
35 |
+
output_string = (
|
36 |
+
f"No manipulation found (manipulation probability {pred:.2f})."
|
37 |
+
)
|
38 |
+
|
39 |
+
overlay = draw_segmentation_masks(
|
40 |
+
dsm_image, masks=out_map[0, ...] > opt.mask_threshold
|
41 |
+
)
|
42 |
+
overlay = overlay.permute(1, 2, 0)
|
43 |
+
overlay = overlay.detach().cpu().numpy()
|
44 |
+
overlay = overlay.astype(np.uint8)
|
45 |
+
return overlay, output_string
|
46 |
+
|
47 |
+
|
48 |
+
def _get_model(config_path="configs/final.yaml", ckpt_path="tmp/checkpoint.pt"):
|
49 |
+
ckpt_path = Path(ckpt_path)
|
50 |
+
if not ckpt_path.exists():
|
51 |
+
ckpt_path.parent.mkdir(exist_ok=True, parents=True)
|
52 |
+
hf_hub_download(
|
53 |
+
repo_id="yhzhai/WSCL",
|
54 |
+
filename="checkpoint.pt",
|
55 |
+
local_dir=ckpt_path.parent.as_posix(),
|
56 |
+
)
|
57 |
+
|
58 |
+
opt = get_opt(config_path)
|
59 |
+
opt.resume = ckpt_path.as_posix()
|
60 |
+
|
61 |
+
model = get_ensemble_model(opt).to(opt.device)
|
62 |
+
misc.resume_from(model, opt.resume)
|
63 |
+
return opt, model
|
64 |
+
|
65 |
+
|
66 |
+
iface = gr.Interface(
|
67 |
+
fn=greet,
|
68 |
+
title="WSCL: Image Manipulation Detection",
|
69 |
+
inputs=gr.Image(),
|
70 |
+
outputs=["image", "text"],
|
71 |
+
examples=[["demo/au.jpg"], ["demo/tp.jpg"]],
|
72 |
+
cache_examples=True,
|
73 |
+
)
|
74 |
+
iface.launch()
|
demo.py
CHANGED
@@ -1,9 +1,10 @@
|
|
|
|
|
|
1 |
import albumentations as A
|
2 |
import cv2
|
3 |
import torch
|
4 |
import tqdm
|
5 |
from albumentations.pytorch.functional import img_to_tensor
|
6 |
-
from pathlib import Path
|
7 |
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
8 |
from torchvision.utils import draw_segmentation_masks, make_grid, save_image
|
9 |
|
@@ -31,8 +32,8 @@ def demo(folder_path, output_path=Path("tmp")):
|
|
31 |
image = image.to(opt.device).unsqueeze(0)
|
32 |
outputs = model(image, seg_size=image_size)
|
33 |
out_map = outputs["ensemble"]["out_map"][0, ...].detach().cpu()
|
34 |
-
pred = outputs["ensemble"]["out_map"].max().item()
|
35 |
-
if
|
36 |
print(f"Found manipulation in {image_path.name}")
|
37 |
else:
|
38 |
print(f"No manipulation found in {image_path.name}")
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
import albumentations as A
|
4 |
import cv2
|
5 |
import torch
|
6 |
import tqdm
|
7 |
from albumentations.pytorch.functional import img_to_tensor
|
|
|
8 |
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
9 |
from torchvision.utils import draw_segmentation_masks, make_grid, save_image
|
10 |
|
|
|
32 |
image = image.to(opt.device).unsqueeze(0)
|
33 |
outputs = model(image, seg_size=image_size)
|
34 |
out_map = outputs["ensemble"]["out_map"][0, ...].detach().cpu()
|
35 |
+
pred = outputs["ensemble"]["out_map"].max().item()
|
36 |
+
if pred > opt.mask_threshold:
|
37 |
print(f"Found manipulation in {image_path.name}")
|
38 |
else:
|
39 |
print(f"No manipulation found in {image_path.name}")
|