from torch import nn class Bottleneck(nn.Module): """ (b,c_in,y,x) -> (b,4*c_out,y,x) """ expansion = 4 def __init__(self, inplanes, planes, downsample=None, bn_momentum=.1): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes, momentum=bn_momentum) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes, momentum=bn_momentum) self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * self.expansion, momentum=bn_momentum) self.relu = nn.ReLU(inplace=True) self.downsample = downsample def forward(self, x): residual = x out = self.relu(self.bn1(self.conv1(x))) out = self.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) if self.downsample is not None: residual = self.downsample(x) out += residual return self.relu(out) if __name__ == '__main__': import torch downsample = nn.Sequential( nn.Conv2d(64, 256, kernel_size=1, stride=1, bias=False), nn.BatchNorm2d(256), ) model = Bottleneck(64, 64, downsample=downsample) x = torch.randn(1, 64, 128, 128) print(model(x).size()) # torch.Size([1,256,128,128]) model = Bottleneck(256,64) x = torch.randn(1,256,128,128) print(model(x).size()) # torch.Size([2,256,128,128])