from torch import nn class BasicBlock(nn.Module): """ (b,c,y,x) -> (b,c,y,x) """ expansion = 1 def __init__(self, planes, bn_momentum=.1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes, momentum=bn_momentum) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes, momentum=bn_momentum) def forward(self, x): residual = x out = self.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += residual return self.relu(out) if __name__ == '__main__': import torch model = BasicBlock(256) x = torch.randn(1, 256, 128, 128) print(model(x).size()) # torch.Size([1,256,128,128])