Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import torch | |
import spaces | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load model and tokenizer if a GPU is available | |
if torch.cuda.is_available(): | |
model_id = "allenai/OLMo-7B-Instruct" | |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True) | |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) | |
else: | |
raise EnvironmentError("CUDA device not available. Please run on a GPU-enabled environment.") | |
# Basic function to generate response based on passage and question | |
def generate_response(passage: str, question: str) -> str: | |
# Prepare the input text by combining the passage and question | |
user_message = f"Passage: {passage}\nQuestion: {question}" | |
inputs = tokenizer(user_message, return_tensors="pt").to(model.device) | |
# Generate text, focusing only on the new tokens added by the model | |
outputs = model.generate(inputs.input_ids, max_new_tokens=150) | |
# Decode only the generated part, skipping the prompt input | |
generated_tokens = outputs[0][inputs.input_ids.shape[-1]:] # Ignore input tokens in the output | |
response = tokenizer.decode(generated_tokens, skip_special_tokens=True) | |
return response | |
# Gradio Interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Passage and Question Response Generator") | |
passage_input = gr.Textbox(label="Passage", placeholder="Enter the passage here", lines=5) | |
question_input = gr.Textbox(label="Question", placeholder="Enter the question here", lines=2) | |
output_box = gr.Textbox(label="Response", placeholder="Model's response will appear here") | |
submit_button = gr.Button("Generate Response") | |
submit_button.click(fn=generate_response, inputs=[passage_input, question_input], outputs=output_box) | |
# Run the app | |
if __name__ == "__main__": | |
demo.launch() | |