Spaces:
Sleeping
Sleeping
Yinong Liang
commited on
Add files via upload
Browse files- Dockerfile +11 -0
- README.md +1 -0
- app.py +162 -0
- chainlit.md +3 -0
- chat_logo.jpg +0 -0
Dockerfile
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.11
|
2 |
+
RUN useradd -m -u 1000 user
|
3 |
+
USER user
|
4 |
+
ENV HOME=/home/user \
|
5 |
+
PATH=/home/user/.local/bin:$PATH
|
6 |
+
WORKDIR $HOME/app
|
7 |
+
COPY --chown=user . $HOME/app
|
8 |
+
COPY ./requirements.txt ~/app/requirements.txt
|
9 |
+
RUN pip install -r requirements.txt
|
10 |
+
COPY . .
|
11 |
+
CMD ["chainlit", "run", "app.py", "--port", "7860"]
|
README.md
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
title: ChatWithYourLegalPDF
|
app.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List
|
3 |
+
from langchain_community.document_loaders import PyMuPDFLoader
|
4 |
+
import uuid
|
5 |
+
|
6 |
+
from langchain_openai import OpenAIEmbeddings
|
7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
from langchain.vectorstores import Chroma
|
9 |
+
from langchain.chains import (
|
10 |
+
ConversationalRetrievalChain,
|
11 |
+
)
|
12 |
+
from langchain.document_loaders import PyPDFLoader
|
13 |
+
from langchain.chat_models import ChatOpenAI
|
14 |
+
from langchain.prompts.chat import (
|
15 |
+
ChatPromptTemplate,
|
16 |
+
SystemMessagePromptTemplate,
|
17 |
+
HumanMessagePromptTemplate,
|
18 |
+
)
|
19 |
+
from langchain.docstore.document import Document
|
20 |
+
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
|
21 |
+
from chainlit.types import AskFileResponse
|
22 |
+
|
23 |
+
import chainlit as cl
|
24 |
+
from langchain_qdrant import QdrantVectorStore
|
25 |
+
from qdrant_client import QdrantClient
|
26 |
+
from qdrant_client.http.models import Distance, VectorParams
|
27 |
+
|
28 |
+
system_template = """Use the following pieces of context to answer the users question.
|
29 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
30 |
+
ALWAYS return a "SOURCES" part in your answer.
|
31 |
+
The "SOURCES" part should be a reference to the source of the document from which you got your answer.
|
32 |
+
And if the user greets with greetings like Hi, hello, How are you, etc reply accordingly as well.
|
33 |
+
Example of your response should be:
|
34 |
+
The answer is foo
|
35 |
+
SOURCES: xyz
|
36 |
+
Begin!
|
37 |
+
----------------
|
38 |
+
{summaries}"""
|
39 |
+
messages = [
|
40 |
+
SystemMessagePromptTemplate.from_template(system_template),
|
41 |
+
HumanMessagePromptTemplate.from_template("{question}"),
|
42 |
+
]
|
43 |
+
prompt = ChatPromptTemplate.from_messages(messages)
|
44 |
+
chain_type_kwargs = {"prompt": prompt}
|
45 |
+
|
46 |
+
|
47 |
+
def generate_vdb(chunks=None):
|
48 |
+
EMBEDDING_MODEL = "text-embedding-3-small"
|
49 |
+
embeddings = OpenAIEmbeddings(model=EMBEDDING_MODEL)
|
50 |
+
PERSIST_PATH = "./qdrant_vector_db" # Directory to store Qdrant collection
|
51 |
+
COLLECTION_NAME = "legal_data"
|
52 |
+
VECTOR_SIZE = 1536
|
53 |
+
|
54 |
+
# Check if the vector database already exists
|
55 |
+
if os.path.exists(PERSIST_PATH):
|
56 |
+
print(f"Loading existing Qdrant database from {PERSIST_PATH}")
|
57 |
+
qdrant_client = QdrantClient(path=PERSIST_PATH) # Load the existing DB
|
58 |
+
qdrant_vector_store = QdrantVectorStore(
|
59 |
+
client=qdrant_client,
|
60 |
+
collection_name=COLLECTION_NAME,
|
61 |
+
embedding=embeddings,
|
62 |
+
)
|
63 |
+
else:
|
64 |
+
print(f"Creating new Qdrant database at {PERSIST_PATH}")
|
65 |
+
qdrant_client = QdrantClient(path=PERSIST_PATH) # Create a new DB
|
66 |
+
qdrant_client.create_collection(
|
67 |
+
collection_name=COLLECTION_NAME,
|
68 |
+
vectors_config=VectorParams(size=VECTOR_SIZE, distance=Distance.COSINE),
|
69 |
+
)
|
70 |
+
qdrant_vector_store = QdrantVectorStore(
|
71 |
+
client=qdrant_client,
|
72 |
+
collection_name=COLLECTION_NAME,
|
73 |
+
embedding=embeddings,
|
74 |
+
)
|
75 |
+
qdrant_vector_store.add_documents(chunks)
|
76 |
+
return qdrant_vector_store
|
77 |
+
|
78 |
+
|
79 |
+
@cl.on_chat_start
|
80 |
+
async def on_chat_start():
|
81 |
+
await cl.Avatar(
|
82 |
+
name="Chat Legal AI",
|
83 |
+
path="./chat_logo.jpg",
|
84 |
+
).send()
|
85 |
+
|
86 |
+
pdf_links = [
|
87 |
+
"https://www.whitehouse.gov/wp-content/uploads/2022/10/Blueprint-for-an-AI-Bill-of-Rights.pdf",
|
88 |
+
"https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.600-1.pdf"]
|
89 |
+
|
90 |
+
if not os.path.exists("./qdrant_vector_db"):
|
91 |
+
documents = []
|
92 |
+
for pdf_link in pdf_links:
|
93 |
+
loader = PyMuPDFLoader(pdf_link)
|
94 |
+
loaded_docs = loader.load()
|
95 |
+
documents.extend(loaded_docs)
|
96 |
+
|
97 |
+
CHUNK_SIZE = 1000
|
98 |
+
CHUNK_OVERLAP = 200
|
99 |
+
|
100 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
101 |
+
chunk_size=CHUNK_SIZE,
|
102 |
+
chunk_overlap=CHUNK_OVERLAP,
|
103 |
+
length_function=len,
|
104 |
+
)
|
105 |
+
split_chunks = text_splitter.split_documents(documents)
|
106 |
+
|
107 |
+
docsearch = generate_vdb(split_chunks)
|
108 |
+
else:
|
109 |
+
docsearch = generate_vdb()
|
110 |
+
|
111 |
+
# Let the user know that the system is ready
|
112 |
+
msg = cl.Message(
|
113 |
+
content=f"Welcome to the AI Legal Chatbot! Ask me anything about the AI policy", disable_human_feedback=True, author="Chat Legal AI"
|
114 |
+
)
|
115 |
+
await msg.send()
|
116 |
+
|
117 |
+
message_history = ChatMessageHistory()
|
118 |
+
|
119 |
+
memory = ConversationBufferMemory(
|
120 |
+
memory_key="chat_history",
|
121 |
+
output_key="answer",
|
122 |
+
chat_memory=message_history,
|
123 |
+
return_messages=True,
|
124 |
+
)
|
125 |
+
|
126 |
+
# Create a chain that uses the Chroma vector store
|
127 |
+
chain = ConversationalRetrievalChain.from_llm(
|
128 |
+
ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, streaming=True),
|
129 |
+
chain_type="stuff",
|
130 |
+
retriever=docsearch.as_retriever(),
|
131 |
+
memory=memory,
|
132 |
+
return_source_documents=True,
|
133 |
+
)
|
134 |
+
cl.user_session.set("chain", chain)
|
135 |
+
|
136 |
+
|
137 |
+
@cl.on_message
|
138 |
+
async def main(message):
|
139 |
+
chain = cl.user_session.get("chain") # type: ConversationalRetrievalChain
|
140 |
+
cb = cl.AsyncLangchainCallbackHandler()
|
141 |
+
|
142 |
+
res = await chain.acall(message.content, callbacks=[cb])
|
143 |
+
answer = res["answer"]
|
144 |
+
source_documents = res["source_documents"] # type: List[Document]
|
145 |
+
|
146 |
+
text_elements = [] # type: List[cl.Text]
|
147 |
+
|
148 |
+
if source_documents:
|
149 |
+
for source_idx, source_doc in enumerate(source_documents):
|
150 |
+
source_name = f"source_{source_idx}"
|
151 |
+
# Create the text element referenced in the message
|
152 |
+
text_elements.append(
|
153 |
+
cl.Text(content=source_doc.page_content, name=source_name)
|
154 |
+
)
|
155 |
+
source_names = [text_el.name for text_el in text_elements]
|
156 |
+
|
157 |
+
if source_names:
|
158 |
+
answer += f"\nSources: {', '.join(source_names)}"
|
159 |
+
else:
|
160 |
+
answer += "\nNo sources found"
|
161 |
+
|
162 |
+
await cl.Message(content=answer, elements=text_elements,author="Chat Legal AI").send()
|
chainlit.md
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# Chat with Legal PDF
|
2 |
+
|
3 |
+
This Chainlit app was created following instructions from [this repository!](https://github.com/AI-Maker-Space/Beyond-ChatGPT)
|
chat_logo.jpg
ADDED
![]() |