Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
def reduce_loss(loss, reduction): | |
"""Reduce loss as specified. | |
Args: | |
loss (Tensor): Elementwise loss tensor. | |
reduction (str): Options are "none", "mean" and "sum". | |
Return: | |
Tensor: Reduced loss tensor. | |
""" | |
reduction_enum = F._Reduction.get_enum(reduction) | |
# none: 0, elementwise_mean:1, sum: 2 | |
if reduction_enum == 0: | |
return loss | |
elif reduction_enum == 1: | |
return loss.mean() | |
elif reduction_enum == 2: | |
return loss.sum() | |
def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None): | |
"""Apply element-wise weight and reduce loss. | |
Args: | |
loss (Tensor): Element-wise loss. | |
weight (Tensor): Element-wise weights. | |
reduction (str): Same as built-in losses of PyTorch. | |
avg_factor (float): Avarage factor when computing the mean of losses. | |
Returns: | |
Tensor: Processed loss values. | |
""" | |
# if weight is specified, apply element-wise weight | |
if weight is not None: | |
assert weight.dim() == loss.dim() | |
if weight.dim() > 1: | |
assert weight.size(1) == 1 or weight.size(1) == loss.size(1) | |
loss = loss * weight | |
# if avg_factor is not specified, just reduce the loss | |
if avg_factor is None: | |
loss = reduce_loss(loss, reduction) | |
else: | |
# if reduction is mean, then average the loss by avg_factor | |
if reduction == 'mean': | |
loss = loss.sum() / avg_factor | |
# if reduction is 'none', then do nothing, otherwise raise an error | |
elif reduction != 'none': | |
raise ValueError('avg_factor can not be used with reduction="sum"') | |
return loss | |
def cross_entropy(pred, | |
label, | |
weight=None, | |
class_weight=None, | |
reduction='mean', | |
avg_factor=None, | |
ignore_index=-100): | |
"""The wrapper function for :func:`F.cross_entropy`""" | |
# class_weight is a manual rescaling weight given to each class. | |
# If given, has to be a Tensor of size C element-wise losses | |
loss = F.cross_entropy( | |
pred, | |
label, | |
weight=class_weight, | |
reduction='none', | |
ignore_index=ignore_index) | |
# apply weights and do the reduction | |
if weight is not None: | |
weight = weight.float() | |
loss = weight_reduce_loss( | |
loss, weight=weight, reduction=reduction, avg_factor=avg_factor) | |
return loss | |
def _expand_onehot_labels(labels, label_weights, target_shape, ignore_index): | |
"""Expand onehot labels to match the size of prediction.""" | |
bin_labels = labels.new_zeros(target_shape) | |
valid_mask = (labels >= 0) & (labels != ignore_index) | |
inds = torch.nonzero(valid_mask, as_tuple=True) | |
if inds[0].numel() > 0: | |
if labels.dim() == 3: | |
bin_labels[inds[0], labels[valid_mask], inds[1], inds[2]] = 1 | |
else: | |
bin_labels[inds[0], labels[valid_mask]] = 1 | |
valid_mask = valid_mask.unsqueeze(1).expand(target_shape).float() | |
if label_weights is None: | |
bin_label_weights = valid_mask | |
else: | |
bin_label_weights = label_weights.unsqueeze(1).expand(target_shape) | |
bin_label_weights *= valid_mask | |
return bin_labels, bin_label_weights | |
def binary_cross_entropy(pred, | |
label, | |
weight=None, | |
reduction='mean', | |
avg_factor=None, | |
class_weight=None, | |
ignore_index=255): | |
"""Calculate the binary CrossEntropy loss. | |
Args: | |
pred (torch.Tensor): The prediction with shape (N, 1). | |
label (torch.Tensor): The learning label of the prediction. | |
weight (torch.Tensor, optional): Sample-wise loss weight. | |
reduction (str, optional): The method used to reduce the loss. | |
Options are "none", "mean" and "sum". | |
avg_factor (int, optional): Average factor that is used to average | |
the loss. Defaults to None. | |
class_weight (list[float], optional): The weight for each class. | |
ignore_index (int | None): The label index to be ignored. Default: 255 | |
Returns: | |
torch.Tensor: The calculated loss | |
""" | |
if pred.dim() != label.dim(): | |
assert (pred.dim() == 2 and label.dim() == 1) or ( | |
pred.dim() == 4 and label.dim() == 3), \ | |
'Only pred shape [N, C], label shape [N] or pred shape [N, C, ' \ | |
'H, W], label shape [N, H, W] are supported' | |
label, weight = _expand_onehot_labels(label, weight, pred.shape, | |
ignore_index) | |
# weighted element-wise losses | |
if weight is not None: | |
weight = weight.float() | |
loss = F.binary_cross_entropy_with_logits( | |
pred, label.float(), pos_weight=class_weight, reduction='none') | |
# do the reduction for the weighted loss | |
loss = weight_reduce_loss( | |
loss, weight, reduction=reduction, avg_factor=avg_factor) | |
return loss | |
def mask_cross_entropy(pred, | |
target, | |
label, | |
reduction='mean', | |
avg_factor=None, | |
class_weight=None, | |
ignore_index=None): | |
"""Calculate the CrossEntropy loss for masks. | |
Args: | |
pred (torch.Tensor): The prediction with shape (N, C), C is the number | |
of classes. | |
target (torch.Tensor): The learning label of the prediction. | |
label (torch.Tensor): ``label`` indicates the class label of the mask' | |
corresponding object. This will be used to select the mask in the | |
of the class which the object belongs to when the mask prediction | |
if not class-agnostic. | |
reduction (str, optional): The method used to reduce the loss. | |
Options are "none", "mean" and "sum". | |
avg_factor (int, optional): Average factor that is used to average | |
the loss. Defaults to None. | |
class_weight (list[float], optional): The weight for each class. | |
ignore_index (None): Placeholder, to be consistent with other loss. | |
Default: None. | |
Returns: | |
torch.Tensor: The calculated loss | |
""" | |
assert ignore_index is None, 'BCE loss does not support ignore_index' | |
# TODO: handle these two reserved arguments | |
assert reduction == 'mean' and avg_factor is None | |
num_rois = pred.size()[0] | |
inds = torch.arange(0, num_rois, dtype=torch.long, device=pred.device) | |
pred_slice = pred[inds, label].squeeze(1) | |
return F.binary_cross_entropy_with_logits( | |
pred_slice, target, weight=class_weight, reduction='mean')[None] | |
class CrossEntropyLoss(nn.Module): | |
"""CrossEntropyLoss. | |
Args: | |
use_sigmoid (bool, optional): Whether the prediction uses sigmoid | |
of softmax. Defaults to False. | |
use_mask (bool, optional): Whether to use mask cross entropy loss. | |
Defaults to False. | |
reduction (str, optional): . Defaults to 'mean'. | |
Options are "none", "mean" and "sum". | |
class_weight (list[float], optional): Weight of each class. | |
Defaults to None. | |
loss_weight (float, optional): Weight of the loss. Defaults to 1.0. | |
""" | |
def __init__(self, | |
use_sigmoid=False, | |
use_mask=False, | |
reduction='mean', | |
class_weight=None, | |
loss_weight=1.0): | |
super(CrossEntropyLoss, self).__init__() | |
assert (use_sigmoid is False) or (use_mask is False) | |
self.use_sigmoid = use_sigmoid | |
self.use_mask = use_mask | |
self.reduction = reduction | |
self.loss_weight = loss_weight | |
self.class_weight = class_weight | |
if self.use_sigmoid: | |
self.cls_criterion = binary_cross_entropy | |
elif self.use_mask: | |
self.cls_criterion = mask_cross_entropy | |
else: | |
self.cls_criterion = cross_entropy | |
def forward(self, | |
cls_score, | |
label, | |
weight=None, | |
avg_factor=None, | |
reduction_override=None, | |
**kwargs): | |
"""Forward function.""" | |
assert reduction_override in (None, 'none', 'mean', 'sum') | |
reduction = ( | |
reduction_override if reduction_override else self.reduction) | |
if self.class_weight is not None: | |
class_weight = cls_score.new_tensor(self.class_weight) | |
else: | |
class_weight = None | |
loss_cls = self.loss_weight * self.cls_criterion( | |
cls_score, | |
label, | |
weight, | |
class_weight=class_weight, | |
reduction=reduction, | |
avg_factor=avg_factor, | |
**kwargs) | |
return loss_cls | |