Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn.functional as F | |
def calculate_adaptive_weight(recon_loss, g_loss, last_layer, disc_weight_max): | |
recon_grads = torch.autograd.grad( | |
recon_loss, last_layer, retain_graph=True)[0] | |
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] | |
d_weight = torch.norm(recon_grads) / (torch.norm(g_grads) + 1e-4) | |
d_weight = torch.clamp(d_weight, 0.0, disc_weight_max).detach() | |
return d_weight | |
def adopt_weight(weight, global_step, threshold=0, value=0.): | |
if global_step < threshold: | |
weight = value | |
return weight | |
def hinge_d_loss(logits_real, logits_fake): | |
loss_real = torch.mean(F.relu(1. - logits_real)) | |
loss_fake = torch.mean(F.relu(1. + logits_fake)) | |
d_loss = 0.5 * (loss_real + loss_fake) | |
return d_loss | |
def DiffAugment(x, policy='', channels_first=True): | |
if policy: | |
if not channels_first: | |
x = x.permute(0, 3, 1, 2) | |
for p in policy.split(','): | |
for f in AUGMENT_FNS[p]: | |
x = f(x) | |
if not channels_first: | |
x = x.permute(0, 2, 3, 1) | |
x = x.contiguous() | |
return x | |
def rand_brightness(x): | |
x = x + ( | |
torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) - 0.5) | |
return x | |
def rand_saturation(x): | |
x_mean = x.mean(dim=1, keepdim=True) | |
x = (x - x_mean) * (torch.rand( | |
x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) * 2) + x_mean | |
return x | |
def rand_contrast(x): | |
x_mean = x.mean(dim=[1, 2, 3], keepdim=True) | |
x = (x - x_mean) * (torch.rand( | |
x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) + 0.5) + x_mean | |
return x | |
def rand_translation(x, ratio=0.125): | |
shift_x, shift_y = int(x.size(2) * ratio + | |
0.5), int(x.size(3) * ratio + 0.5) | |
translation_x = torch.randint( | |
-shift_x, shift_x + 1, size=[x.size(0), 1, 1], device=x.device) | |
translation_y = torch.randint( | |
-shift_y, shift_y + 1, size=[x.size(0), 1, 1], device=x.device) | |
grid_batch, grid_x, grid_y = torch.meshgrid( | |
torch.arange(x.size(0), dtype=torch.long, device=x.device), | |
torch.arange(x.size(2), dtype=torch.long, device=x.device), | |
torch.arange(x.size(3), dtype=torch.long, device=x.device), | |
) | |
grid_x = torch.clamp(grid_x + translation_x + 1, 0, x.size(2) + 1) | |
grid_y = torch.clamp(grid_y + translation_y + 1, 0, x.size(3) + 1) | |
x_pad = F.pad(x, [1, 1, 1, 1, 0, 0, 0, 0]) | |
x = x_pad.permute(0, 2, 3, 1).contiguous()[grid_batch, grid_x, | |
grid_y].permute(0, 3, 1, 2) | |
return x | |
def rand_cutout(x, ratio=0.5): | |
cutout_size = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5) | |
offset_x = torch.randint( | |
0, | |
x.size(2) + (1 - cutout_size[0] % 2), | |
size=[x.size(0), 1, 1], | |
device=x.device) | |
offset_y = torch.randint( | |
0, | |
x.size(3) + (1 - cutout_size[1] % 2), | |
size=[x.size(0), 1, 1], | |
device=x.device) | |
grid_batch, grid_x, grid_y = torch.meshgrid( | |
torch.arange(x.size(0), dtype=torch.long, device=x.device), | |
torch.arange(cutout_size[0], dtype=torch.long, device=x.device), | |
torch.arange(cutout_size[1], dtype=torch.long, device=x.device), | |
) | |
grid_x = torch.clamp( | |
grid_x + offset_x - cutout_size[0] // 2, min=0, max=x.size(2) - 1) | |
grid_y = torch.clamp( | |
grid_y + offset_y - cutout_size[1] // 2, min=0, max=x.size(3) - 1) | |
mask = torch.ones( | |
x.size(0), x.size(2), x.size(3), dtype=x.dtype, device=x.device) | |
mask[grid_batch, grid_x, grid_y] = 0 | |
x = x * mask.unsqueeze(1) | |
return x | |
AUGMENT_FNS = { | |
'color': [rand_brightness, rand_saturation, rand_contrast], | |
'translation': [rand_translation], | |
'cutout': [rand_cutout], | |
} | |