yiw commited on
Commit
864cbcc
·
1 Parent(s): 997da96

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -40
app.py CHANGED
@@ -1,49 +1,17 @@
1
- import joblib
2
- import pandas as pd
3
  import streamlit as st
 
4
 
5
-
6
-
7
- model = joblib.load('model_a.joblib')
8
- unique_values = unique_values = joblib.load('unique_values.joblib')
9
-
10
- unique_store_city = unique_values["store_city"]
11
- unique_promotion_name= unique_values["promotion_name"]
12
- unique_media_type = unique_values["media_type"]
13
- unique_store_type = unique_values["store_type"]
14
- unique_sales_country= unique_values["sales_country"]
15
- unique_store_state = unique_values["store_state"]
16
-
17
  def main():
18
- st.title("Adult Income")
19
-
20
- with st.form("questionaire"):
21
- store_sqft = st.slider('store_sqft',min_value=10,max_value=100)
22
- store_city = st.selectbox('store_city',options=unique_store_city)
23
- promotion_name = st.selectbox('promotion_name',options=unique_promotion_name)
24
- media_type = st.selectbox('media_type ',options=unique_media_type)
25
- store_type = st.selectbox('Occupation',options=unique_store_type)
26
- sales_country = st.selectbox('Relationship',options=sales_country)
27
- store_state = st.selectbox('sales_country',options=unique_store_state)
28
- meat_sqft = st.slider('meat_sqft',min_value=1,max_value=100)
29
- frozen_sqft = st.slider('frozen_sqft',min_value=1,max_value=100)
30
 
 
 
31
  # clicked==True only when the button is clicked
32
- clicked = st.form_submit_button("Predict income")
33
  if clicked:
34
- result=model.predict(pd.DataFrame({"store_sqft": [store_sqft],
35
- "store_city": [store_city],
36
- "promotion_name": [promotion_name],
37
- "media_type": [media_type],
38
- "store_type ": [store_type ],
39
- "sales_country": [sales_country],
40
- "store_state": [store_state],
41
- "meat_sqft": [meat_sqft],
42
- "frozen_sqft": [frozen_sqft]}))
43
 
44
- # Show prediction
45
-
46
- st.success('Your Predicted income is' + result)
47
- # Run main()
48
  if __name__ == "__main__":
49
  main()
 
 
 
1
  import streamlit as st
2
+ from transformers import pipeline
3
 
4
+ classifier = pipeline("text-generation", model="distilbert-base-uncased-finetuned-sst-2-english")
 
 
 
 
 
 
 
 
 
 
 
5
  def main():
6
+ st.title("text-generation")
 
 
 
 
 
 
 
 
 
 
 
7
 
8
+ with st.form("text_field"):
9
+ text = st.text_area('enter some text:')
10
  # clicked==True only when the button is clicked
11
+ clicked = st.form_submit_button("Submit")
12
  if clicked:
13
+ results = classifier([text])
14
+ st.json(results)
 
 
 
 
 
 
 
15
 
 
 
 
 
16
  if __name__ == "__main__":
17
  main()