Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,25 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
from PIL import Image
|
4 |
-
|
5 |
-
|
|
|
6 |
|
7 |
-
classifier = pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english")
|
8 |
def main():
|
9 |
-
st.title("
|
10 |
|
11 |
with st.form("text_field"):
|
12 |
-
|
|
|
|
|
|
|
13 |
clicked = st.form_submit_button("Submit")
|
14 |
if clicked:
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
18 |
|
19 |
-
img=Image.open(uploaded_file)
|
20 |
-
|
21 |
-
extractor = AutoFeatureExtractor.from_pretrained("yangy50/garbage-classification")
|
22 |
-
model = AutoModelForImageClassification.from_pretrained("yangy50/garbage-classification")
|
23 |
-
|
24 |
-
inputs = extractor(img,return_tensors="pt")
|
25 |
-
outputs = model(**inputs)
|
26 |
-
label_num=outputs.logits.softmax(1).argmax(1)
|
27 |
-
label_num=label_num.item()
|
28 |
-
|
29 |
-
st.write("The prediction class is:")
|
30 |
-
|
31 |
-
if label_num==0:
|
32 |
-
st.write("cardboard")
|
33 |
-
elif label_num==1:
|
34 |
-
st.write("glass")
|
35 |
-
elif label_num==2:
|
36 |
-
st.write("metal")
|
37 |
-
elif label_num==3:
|
38 |
-
st.write("paper")
|
39 |
-
elif label_num==4:
|
40 |
-
st.write("plastic")
|
41 |
-
else:
|
42 |
-
st.write("trash")
|
43 |
-
|
44 |
-
st.image(img)
|
45 |
-
|
46 |
|
47 |
if __name__ == "__main__":
|
48 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
from PIL import Image
|
4 |
+
classifier = pipeline("image-classification", model="google/vit-base-patch16-224")
|
5 |
+
def get_img_from_url(url):
|
6 |
+
return Image.open(requests.get(url, stream=True).raw)
|
7 |
|
|
|
8 |
def main():
|
9 |
+
st.title("Yelp review")
|
10 |
|
11 |
with st.form("text_field"):
|
12 |
+
text = st.text_area('enter some text:')
|
13 |
+
url = st.text_input("URL to some image", "https://images.livemint.com/img/2022/08/01/600x338/Cat-andriyko-podilnyk-RCfi7vgJjUY-unsplash_1659328989095_1659328998370_1659328998370.jpg")
|
14 |
+
img = get_img_from_url(url)
|
15 |
+
# clicked==True only when the button is clicked
|
16 |
clicked = st.form_submit_button("Submit")
|
17 |
if clicked:
|
18 |
+
results = classifier([text])
|
19 |
+
st.json(results)
|
20 |
+
|
21 |
+
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
if __name__ == "__main__":
|
25 |
main()
|