##### setup #!/bin/bash file_name=$(basename $0) current_path=$(pwd) cd /data/yixin/workspace/unl-graph-usenix source activate /data/yixin/anaconda/unlg datasets=("IMDB-BINARY" "MUTAG" "ENZYMES" "IMDB-MULTI" ) models=( "gcn" "gin" "sage" ) entity="mib-nlp" exp_name="adv-run-v3" batch_size=8 methods=( "clean" "rand" "feat" "grad" "inject" "adv") wd=1e-5 adv_train_budgets=( 0.07 0.09 0.11 ) gen_exp_name="main-results-v2" lr=0.01 es_patience=40 seed_default=0 optimizer="adam" budget=0.05 total_epoch=300 max_steps=5000 seeds=("402") # mkdir $current_path/logs/ if not exist mkdir -p $current_path/logs/ mkdir -p $current_path/logs/$exp_name ##### ##### loop for adv_train_budget in "${adv_train_budgets[@]}"; do for dataset in "${datasets[@]}"; do for model in "${models[@]}"; do for method in "${methods[@]}"; do ##### ##### main comb_command="for seed in ${seeds[@]} ; do nohup python eval.py --dataset $dataset --model ${model} --method ${method} --lr $lr --exp_name $exp_name --entity $entity --batch_size $batch_size --seed \$seed --early_stop --num_epochs $total_epoch --wd $wd --device $device --es_patience $es_patience --optimizer $optimizer --max_steps $max_steps --adv_train --adv_train_budget $adv_train_budget --gen_exp_name $gen_exp_name > $current_path/logs/$exp_name/$dataset.$model.$method-\$seed-$RANDOM$RANDOM.log 2>&1 ; done; " eval $comb_command & ##### ##### done; done; done; done; #####