Spaces:
Runtime error
Runtime error
Initial commit for initial version
Browse filesSimple Chat-UI with a Transformers library back-end for inference
app.py
ADDED
@@ -0,0 +1,1515 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, BitsAndBytesConfig
|
4 |
+
from threading import Thread
|
5 |
+
import time
|
6 |
+
import logging
|
7 |
+
import gc
|
8 |
+
from pathlib import Path
|
9 |
+
import re
|
10 |
+
from huggingface_hub import HfApi, list_models
|
11 |
+
import os
|
12 |
+
import queue
|
13 |
+
import threading
|
14 |
+
from collections import deque
|
15 |
+
|
16 |
+
# Set PyTorch memory management environment variables
|
17 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
|
18 |
+
|
19 |
+
# Configure logging
|
20 |
+
logging.basicConfig(
|
21 |
+
level=logging.INFO,
|
22 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
23 |
+
handlers=[
|
24 |
+
logging.FileHandler('gradio-chat-ui.log'),
|
25 |
+
logging.StreamHandler()
|
26 |
+
]
|
27 |
+
)
|
28 |
+
logger = logging.getLogger(__name__)
|
29 |
+
|
30 |
+
# Log memory management settings
|
31 |
+
logger.info(f"PyTorch CUDA allocation config: {os.environ.get('PYTORCH_CUDA_ALLOC_CONF')}")
|
32 |
+
logger.info(f"CUDA device count: {torch.cuda.device_count() if torch.cuda.is_available() else 'N/A'}")
|
33 |
+
|
34 |
+
# Model parameters
|
35 |
+
MODEL_NAME = "No Model Loaded"
|
36 |
+
MAX_LENGTH = 16384
|
37 |
+
DEFAULT_TEMPERATURE = 0.15
|
38 |
+
DEFAULT_TOP_P = 0.93
|
39 |
+
DEFAULT_TOP_K = 50
|
40 |
+
DEFAULT_REP_PENALTY = 1.15
|
41 |
+
|
42 |
+
# Base location for local models
|
43 |
+
LOCAL_MODELS_BASE = "/home/llm-models/"
|
44 |
+
|
45 |
+
# Global variables
|
46 |
+
model = None
|
47 |
+
tokenizer = None
|
48 |
+
hf_api = HfApi()
|
49 |
+
|
50 |
+
# Generation metadata storage with automatic cleanup
|
51 |
+
generation_metadata = deque(maxlen=100) # Fixed size deque to prevent unlimited growth
|
52 |
+
|
53 |
+
class RAMSavingIteratorStreamer:
|
54 |
+
"""
|
55 |
+
Custom streamer that saves VRAM by moving tokens to CPU and provides iteration interface for Gradio.
|
56 |
+
Combines the benefits of TextStreamer (RAM saving) with TextIteratorStreamer (iteration).
|
57 |
+
"""
|
58 |
+
def __init__(self, tokenizer, skip_special_tokens=True, skip_prompt=True, timeout=None):
|
59 |
+
self.tokenizer = tokenizer
|
60 |
+
self.skip_special_tokens = skip_special_tokens
|
61 |
+
self.skip_prompt = skip_prompt
|
62 |
+
self.timeout = timeout
|
63 |
+
|
64 |
+
# Token and text storage (CPU-based)
|
65 |
+
self.generated_tokens = []
|
66 |
+
self.generated_text = ""
|
67 |
+
self.token_cache = ""
|
68 |
+
|
69 |
+
# Queue for streaming interface
|
70 |
+
self.text_queue = queue.Queue()
|
71 |
+
self.stop_signal = threading.Event()
|
72 |
+
|
73 |
+
# Track prompt tokens to skip them
|
74 |
+
self.prompt_length = 0
|
75 |
+
self.tokens_processed = 0
|
76 |
+
|
77 |
+
# Decoding state
|
78 |
+
self.print_len = 0
|
79 |
+
|
80 |
+
def put(self, value):
|
81 |
+
"""
|
82 |
+
Receive new token(s) and process them for streaming.
|
83 |
+
This method is called by the model during generation.
|
84 |
+
"""
|
85 |
+
try:
|
86 |
+
# Handle different input types
|
87 |
+
if isinstance(value, torch.Tensor):
|
88 |
+
if value.dim() > 1:
|
89 |
+
value = value[0] # Remove batch dimension if present
|
90 |
+
token_ids = value.tolist()
|
91 |
+
|
92 |
+
# Store CPU version to save VRAM
|
93 |
+
self.generated_tokens.append(value.detach().cpu())
|
94 |
+
else:
|
95 |
+
token_ids = value if isinstance(value, list) else [value]
|
96 |
+
self.generated_tokens.append(torch.tensor(token_ids, dtype=torch.long))
|
97 |
+
|
98 |
+
# Track tokens processed
|
99 |
+
if isinstance(token_ids, list):
|
100 |
+
self.tokens_processed += len(token_ids)
|
101 |
+
else:
|
102 |
+
self.tokens_processed += 1
|
103 |
+
|
104 |
+
# Skip prompt tokens if requested
|
105 |
+
if self.skip_prompt and self.tokens_processed <= self.prompt_length:
|
106 |
+
return
|
107 |
+
|
108 |
+
# Decode incrementally for real-time streaming
|
109 |
+
try:
|
110 |
+
# Get all generated tokens so far
|
111 |
+
if self.generated_tokens:
|
112 |
+
all_tokens = []
|
113 |
+
for tokens in self.generated_tokens:
|
114 |
+
if isinstance(tokens, torch.Tensor):
|
115 |
+
if tokens.dim() == 0:
|
116 |
+
all_tokens.append(tokens.item())
|
117 |
+
else:
|
118 |
+
all_tokens.extend(tokens.tolist())
|
119 |
+
elif isinstance(tokens, list):
|
120 |
+
all_tokens.extend(tokens)
|
121 |
+
else:
|
122 |
+
all_tokens.append(tokens)
|
123 |
+
|
124 |
+
# Decode the full sequence
|
125 |
+
full_text = self.tokenizer.decode(
|
126 |
+
all_tokens,
|
127 |
+
skip_special_tokens=self.skip_special_tokens
|
128 |
+
)
|
129 |
+
|
130 |
+
# Get new text since last update
|
131 |
+
if len(full_text) > self.print_len:
|
132 |
+
new_text = full_text[self.print_len:]
|
133 |
+
self.print_len = len(full_text)
|
134 |
+
self.generated_text = full_text
|
135 |
+
|
136 |
+
# Put new text in queue for iteration
|
137 |
+
if new_text:
|
138 |
+
self.text_queue.put(new_text)
|
139 |
+
|
140 |
+
except Exception as decode_error:
|
141 |
+
logger.warning(f"Decoding error in streamer: {decode_error}")
|
142 |
+
|
143 |
+
except Exception as e:
|
144 |
+
logger.error(f"Error in RAMSavingIteratorStreamer.put: {e}")
|
145 |
+
|
146 |
+
def end(self):
|
147 |
+
"""Signal end of generation."""
|
148 |
+
self.text_queue.put(None) # Sentinel value
|
149 |
+
|
150 |
+
def __iter__(self):
|
151 |
+
"""Make this streamer iterable for Gradio compatibility."""
|
152 |
+
return self
|
153 |
+
|
154 |
+
def __next__(self):
|
155 |
+
"""Get next chunk of text for streaming."""
|
156 |
+
try:
|
157 |
+
value = self.text_queue.get(timeout=self.timeout)
|
158 |
+
if value is None: # End signal
|
159 |
+
raise StopIteration
|
160 |
+
return value
|
161 |
+
except queue.Empty:
|
162 |
+
raise StopIteration
|
163 |
+
|
164 |
+
def set_prompt_length(self, prompt_length):
|
165 |
+
"""Set the length of prompt tokens to skip."""
|
166 |
+
self.prompt_length = prompt_length
|
167 |
+
|
168 |
+
def get_generated_text(self):
|
169 |
+
"""Get the complete generated text."""
|
170 |
+
return self.generated_text
|
171 |
+
|
172 |
+
def get_generated_tokens(self):
|
173 |
+
"""Get all generated tokens as a single tensor."""
|
174 |
+
if not self.generated_tokens:
|
175 |
+
return torch.tensor([])
|
176 |
+
|
177 |
+
# Combine all tokens
|
178 |
+
all_tokens = []
|
179 |
+
for tokens in self.generated_tokens:
|
180 |
+
if isinstance(tokens, torch.Tensor):
|
181 |
+
if tokens.dim() == 0:
|
182 |
+
all_tokens.append(tokens.item())
|
183 |
+
else:
|
184 |
+
all_tokens.extend(tokens.tolist())
|
185 |
+
elif isinstance(tokens, list):
|
186 |
+
all_tokens.extend(tokens)
|
187 |
+
else:
|
188 |
+
all_tokens.append(tokens)
|
189 |
+
|
190 |
+
return torch.tensor(all_tokens, dtype=torch.long)
|
191 |
+
|
192 |
+
def cleanup(self):
|
193 |
+
"""Clean up resources."""
|
194 |
+
self.generated_tokens.clear()
|
195 |
+
self.generated_text = ""
|
196 |
+
self.token_cache = ""
|
197 |
+
|
198 |
+
# Clear queue
|
199 |
+
while not self.text_queue.empty():
|
200 |
+
try:
|
201 |
+
self.text_queue.get_nowait()
|
202 |
+
except queue.Empty:
|
203 |
+
break
|
204 |
+
|
205 |
+
self.stop_signal.set()
|
206 |
+
|
207 |
+
def scan_local_models(base_path=LOCAL_MODELS_BASE):
|
208 |
+
"""Scan for valid models in the local models directory"""
|
209 |
+
try:
|
210 |
+
base_path = Path(base_path)
|
211 |
+
if not base_path.exists():
|
212 |
+
logger.warning(f"Base path does not exist: {base_path}")
|
213 |
+
return []
|
214 |
+
|
215 |
+
valid_models = []
|
216 |
+
|
217 |
+
# Scan subdirectories (depth 1 only)
|
218 |
+
for item in base_path.iterdir():
|
219 |
+
if item.is_dir():
|
220 |
+
# Check if directory contains required model files
|
221 |
+
config_file = item / "config.json"
|
222 |
+
|
223 |
+
# Look for model weight files (safetensors or bin)
|
224 |
+
safetensors_files = list(item.glob("*.safetensors"))
|
225 |
+
bin_files = list(item.glob("*.bin"))
|
226 |
+
|
227 |
+
# Check if it's a valid model directory
|
228 |
+
if config_file.exists() and (safetensors_files or bin_files):
|
229 |
+
valid_models.append(str(item))
|
230 |
+
logger.info(f"Found valid model: {item}")
|
231 |
+
|
232 |
+
# Sort models for consistent ordering
|
233 |
+
valid_models.sort()
|
234 |
+
logger.info(f"Found {len(valid_models)} valid models in {base_path}")
|
235 |
+
|
236 |
+
return valid_models
|
237 |
+
|
238 |
+
except Exception as e:
|
239 |
+
logger.error(f"Error scanning local models: {e}")
|
240 |
+
return []
|
241 |
+
|
242 |
+
def update_local_models_dropdown(base_path):
|
243 |
+
"""Update the local models dropdown based on base path"""
|
244 |
+
if not base_path or not base_path.strip():
|
245 |
+
return gr.Dropdown(choices=[], value=None, interactive=True)
|
246 |
+
|
247 |
+
models = scan_local_models(base_path)
|
248 |
+
model_choices = [Path(model).name for model in models] # Show just the model name
|
249 |
+
model_paths = models # Keep full paths for internal use
|
250 |
+
|
251 |
+
# Create a mapping for display name to full path
|
252 |
+
if model_choices:
|
253 |
+
return gr.Dropdown(
|
254 |
+
choices=list(zip(model_choices, model_paths)),
|
255 |
+
value=model_paths[0] if model_paths else None,
|
256 |
+
label="๐ Available Local Models",
|
257 |
+
interactive=True,
|
258 |
+
allow_custom_value=False, # Don't allow custom for local models
|
259 |
+
filterable=True
|
260 |
+
)
|
261 |
+
else:
|
262 |
+
return gr.Dropdown(
|
263 |
+
choices=[],
|
264 |
+
value=None,
|
265 |
+
label="๐ Available Local Models (None found)",
|
266 |
+
interactive=True,
|
267 |
+
allow_custom_value=False,
|
268 |
+
filterable=True
|
269 |
+
)
|
270 |
+
|
271 |
+
def search_hf_models(query, limit=20):
|
272 |
+
"""Enhanced search for models on Hugging Face Hub with better coverage"""
|
273 |
+
if not query or len(query.strip()) < 2:
|
274 |
+
return []
|
275 |
+
|
276 |
+
try:
|
277 |
+
query = query.strip()
|
278 |
+
model_choices = []
|
279 |
+
|
280 |
+
# Strategy 1: Direct model ID search (if query looks like a model ID)
|
281 |
+
if '/' in query:
|
282 |
+
try:
|
283 |
+
# Try to get the specific model
|
284 |
+
model_info = hf_api.model_info(query)
|
285 |
+
if model_info and hasattr(model_info, 'id'):
|
286 |
+
model_choices.append(model_info.id)
|
287 |
+
logger.info(f"Found direct model: {model_info.id}")
|
288 |
+
except Exception as direct_error:
|
289 |
+
logger.debug(f"Direct model search failed: {direct_error}")
|
290 |
+
|
291 |
+
# Strategy 2: Search with different parameters
|
292 |
+
search_strategies = [
|
293 |
+
# Exact search
|
294 |
+
{"search": query, "sort": "downloads", "direction": -1, "limit": limit//2},
|
295 |
+
# Author search (if query contains /)
|
296 |
+
{"author": query.split('/')[0] if '/' in query else query, "sort": "downloads", "direction": -1, "limit": limit//4} if '/' in query else None,
|
297 |
+
# Broader search
|
298 |
+
{"search": query, "sort": "trending", "direction": -1, "limit": limit//4},
|
299 |
+
]
|
300 |
+
|
301 |
+
for strategy in search_strategies:
|
302 |
+
if strategy is None:
|
303 |
+
continue
|
304 |
+
|
305 |
+
try:
|
306 |
+
models = list_models(
|
307 |
+
task="text-generation",
|
308 |
+
**strategy
|
309 |
+
)
|
310 |
+
|
311 |
+
for model in models:
|
312 |
+
if model.id not in model_choices:
|
313 |
+
model_choices.append(model.id)
|
314 |
+
|
315 |
+
except Exception as strategy_error:
|
316 |
+
logger.debug(f"Search strategy failed: {strategy_error}")
|
317 |
+
|
318 |
+
# Remove duplicates while preserving order
|
319 |
+
seen = set()
|
320 |
+
unique_choices = []
|
321 |
+
for choice in model_choices:
|
322 |
+
if choice not in seen:
|
323 |
+
seen.add(choice)
|
324 |
+
unique_choices.append(choice)
|
325 |
+
|
326 |
+
# Limit results
|
327 |
+
final_choices = unique_choices[:limit]
|
328 |
+
logger.info(f"HF search for '{query}' returned {len(final_choices)} models")
|
329 |
+
|
330 |
+
return final_choices
|
331 |
+
|
332 |
+
except Exception as e:
|
333 |
+
logger.error(f"Error searching models: {str(e)}")
|
334 |
+
return []
|
335 |
+
|
336 |
+
def update_model_dropdown(query):
|
337 |
+
"""Update dropdown with enhanced search results"""
|
338 |
+
if not query or len(query.strip()) < 2:
|
339 |
+
return gr.Dropdown(choices=[], value=None, interactive=True)
|
340 |
+
|
341 |
+
choices = search_hf_models(query, limit=20)
|
342 |
+
return gr.Dropdown(
|
343 |
+
choices=choices,
|
344 |
+
value=choices[0] if choices else None,
|
345 |
+
interactive=True,
|
346 |
+
allow_custom_value=True, # Allow manual typing
|
347 |
+
filterable=True
|
348 |
+
)
|
349 |
+
|
350 |
+
def load_model_with_progress(model_source, hf_model, local_path, local_model_selection, quantization, memory_optimization):
|
351 |
+
"""Load model with progress tracking and memory optimization"""
|
352 |
+
global model, tokenizer, MODEL_NAME
|
353 |
+
|
354 |
+
# Determine model path based on source
|
355 |
+
if model_source == "Hugging Face Model":
|
356 |
+
if not hf_model:
|
357 |
+
return "โ Error: Please select a model from the dropdown"
|
358 |
+
model_path = hf_model
|
359 |
+
else:
|
360 |
+
# Use selected local model if available, otherwise use manual path
|
361 |
+
if local_model_selection:
|
362 |
+
model_path = local_model_selection
|
363 |
+
else:
|
364 |
+
model_path = local_path
|
365 |
+
if not Path(model_path).exists():
|
366 |
+
logger.error(f"Local path does not exist: {model_path}")
|
367 |
+
return f"โ Error: Local path does not exist: {model_path}"
|
368 |
+
|
369 |
+
MODEL_NAME = model_path.split("/")[-1] if "/" in model_path else model_path
|
370 |
+
logger.info(f"Loading model from {model_path} with memory optimization: {memory_optimization}")
|
371 |
+
|
372 |
+
try:
|
373 |
+
# Yield progress updates
|
374 |
+
yield "๐ Initializing model loading..."
|
375 |
+
|
376 |
+
# Setup memory configuration (GPU-only, generous allocation)
|
377 |
+
if torch.cuda.is_available():
|
378 |
+
device_properties = torch.cuda.get_device_properties(0)
|
379 |
+
total_memory_gb = device_properties.total_memory / (1024**3)
|
380 |
+
|
381 |
+
# Set max memory to 11GB as requested (GPU-bound)
|
382 |
+
max_memory_val = 11.5 # Fixed 11GB allocation
|
383 |
+
max_memory = f"{max_memory_val}GB"
|
384 |
+
logger.info(f"Setting max GPU memory to {max_memory} (Total available: {total_memory_gb:.2f}GB)")
|
385 |
+
else:
|
386 |
+
max_memory = "11GB"
|
387 |
+
logger.info("CUDA not available. Using CPU fallback.")
|
388 |
+
|
389 |
+
yield "๐ Configuring quantization settings..."
|
390 |
+
|
391 |
+
# Configure quantization (removed CPU offloading)
|
392 |
+
bnb_config = BitsAndBytesConfig(
|
393 |
+
load_in_4bit=quantization == "4bit",
|
394 |
+
load_in_8bit=quantization == "8bit",
|
395 |
+
bnb_4bit_use_double_quant=True,
|
396 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
397 |
+
bnb_4bit_quant_type="nf4",
|
398 |
+
)
|
399 |
+
|
400 |
+
yield "๐ Loading tokenizer..."
|
401 |
+
|
402 |
+
# Load tokenizer
|
403 |
+
if model_source == "Local Path":
|
404 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
405 |
+
model_path,
|
406 |
+
trust_remote_code=True,
|
407 |
+
local_files_only=True
|
408 |
+
)
|
409 |
+
else:
|
410 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
411 |
+
model_path,
|
412 |
+
trust_remote_code=True
|
413 |
+
)
|
414 |
+
|
415 |
+
yield "๐ Cleaning memory cache..."
|
416 |
+
|
417 |
+
# Clean memory
|
418 |
+
gc.collect()
|
419 |
+
if torch.cuda.is_available():
|
420 |
+
torch.cuda.empty_cache()
|
421 |
+
|
422 |
+
# Determine torch dtype
|
423 |
+
if quantization in ["4bit", "8bit"]:
|
424 |
+
torch_dtype = torch.bfloat16
|
425 |
+
elif quantization == "f16":
|
426 |
+
torch_dtype = torch.float16
|
427 |
+
else: # bf16
|
428 |
+
torch_dtype = torch.bfloat16
|
429 |
+
|
430 |
+
yield "๐ Loading model weights (this may take a while)..."
|
431 |
+
|
432 |
+
# Simple GPU-only model loading parameters
|
433 |
+
model_kwargs = {
|
434 |
+
"device_map": "auto",
|
435 |
+
"max_memory": {0: max_memory} if torch.cuda.is_available() else None,
|
436 |
+
"torch_dtype": torch_dtype,
|
437 |
+
"quantization_config": bnb_config if quantization in ["4bit", "8bit"] else None,
|
438 |
+
"trust_remote_code": True,
|
439 |
+
}
|
440 |
+
|
441 |
+
# Memory optimization specific settings (GPU-only)
|
442 |
+
if memory_optimization:
|
443 |
+
model_kwargs.update({
|
444 |
+
"attn_implementation": "flash_attention_2" if torch.cuda.is_available() else "sdpa",
|
445 |
+
"use_cache": False, # Disable cache by default for memory optimization
|
446 |
+
})
|
447 |
+
else:
|
448 |
+
model_kwargs.update({
|
449 |
+
"attn_implementation": "flash_attention_2" if torch.cuda.is_available() else "sdpa",
|
450 |
+
#"use_cache": True, # Enable cache for performance
|
451 |
+
})
|
452 |
+
|
453 |
+
# Add local files only for local models
|
454 |
+
if model_source == "Local Path":
|
455 |
+
model_kwargs["local_files_only"] = True
|
456 |
+
|
457 |
+
# Load model
|
458 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, **model_kwargs)
|
459 |
+
|
460 |
+
# Post-loading memory optimization
|
461 |
+
if memory_optimization:
|
462 |
+
yield "๐ Applying memory optimizations..."
|
463 |
+
|
464 |
+
# Additional memory cleanup after loading
|
465 |
+
gc.collect()
|
466 |
+
if torch.cuda.is_available():
|
467 |
+
torch.cuda.empty_cache()
|
468 |
+
torch.cuda.synchronize()
|
469 |
+
|
470 |
+
logger.info("Model loaded successfully with memory optimization")
|
471 |
+
yield "โ
Model loaded successfully with memory optimization!" if memory_optimization else "โ
Model loaded successfully!"
|
472 |
+
|
473 |
+
except Exception as e:
|
474 |
+
logger.error(f"Error loading model: {str(e)}", exc_info=True)
|
475 |
+
yield f"โ Error loading model: {str(e)}"
|
476 |
+
|
477 |
+
def unload_model():
|
478 |
+
"""Unload the model and free memory with aggressive cleanup"""
|
479 |
+
global model, tokenizer, MODEL_NAME
|
480 |
+
|
481 |
+
if model is None:
|
482 |
+
return "No model loaded"
|
483 |
+
|
484 |
+
try:
|
485 |
+
logger.info("Unloading model with aggressive memory cleanup...")
|
486 |
+
|
487 |
+
# Step 1: Move model to CPU first (if it was on GPU)
|
488 |
+
if torch.cuda.is_available() and hasattr(model, 'device'):
|
489 |
+
try:
|
490 |
+
model.cpu()
|
491 |
+
logger.info("Model moved to CPU")
|
492 |
+
except Exception as cpu_error:
|
493 |
+
logger.warning(f"Could not move model to CPU: {cpu_error}")
|
494 |
+
|
495 |
+
# Step 2: Clear model cache if available
|
496 |
+
if hasattr(model, 'clear_cache'):
|
497 |
+
model.clear_cache()
|
498 |
+
|
499 |
+
# Step 3: Delete model and tokenizer references
|
500 |
+
del model
|
501 |
+
del tokenizer
|
502 |
+
model = None
|
503 |
+
tokenizer = None
|
504 |
+
|
505 |
+
# Step 4: Reset model name
|
506 |
+
MODEL_NAME = "No Model Loaded"
|
507 |
+
|
508 |
+
# Step 5: Clear metadata deque
|
509 |
+
generation_metadata.clear()
|
510 |
+
|
511 |
+
# Step 6: Aggressive garbage collection (multiple rounds)
|
512 |
+
for i in range(5): # More aggressive - 5 rounds
|
513 |
+
gc.collect()
|
514 |
+
time.sleep(0.1) # Small delay between rounds
|
515 |
+
|
516 |
+
# Step 7: Aggressive CUDA cleanup
|
517 |
+
if torch.cuda.is_available():
|
518 |
+
logger.info("Performing aggressive CUDA cleanup...")
|
519 |
+
|
520 |
+
# Multiple rounds of cache clearing
|
521 |
+
for i in range(5):
|
522 |
+
torch.cuda.empty_cache()
|
523 |
+
torch.cuda.synchronize()
|
524 |
+
|
525 |
+
# Additional PyTorch CUDA cleanup
|
526 |
+
if hasattr(torch.cuda, 'ipc_collect'):
|
527 |
+
torch.cuda.ipc_collect()
|
528 |
+
|
529 |
+
# Reset memory stats
|
530 |
+
if hasattr(torch.cuda, 'reset_peak_memory_stats'):
|
531 |
+
torch.cuda.reset_peak_memory_stats()
|
532 |
+
if hasattr(torch.cuda, 'reset_accumulated_memory_stats'):
|
533 |
+
torch.cuda.reset_accumulated_memory_stats()
|
534 |
+
|
535 |
+
time.sleep(0.1)
|
536 |
+
|
537 |
+
# Step 8: Force PyTorch to release all unused memory
|
538 |
+
if torch.cuda.is_available():
|
539 |
+
try:
|
540 |
+
# Try to trigger the memory pool cleanup
|
541 |
+
torch.cuda.empty_cache()
|
542 |
+
|
543 |
+
# Force a small allocation and deallocation to trigger cleanup
|
544 |
+
dummy_tensor = torch.zeros(1, device='cuda')
|
545 |
+
del dummy_tensor
|
546 |
+
torch.cuda.empty_cache()
|
547 |
+
|
548 |
+
logger.info("Forced memory pool cleanup")
|
549 |
+
except Exception as cleanup_error:
|
550 |
+
logger.warning(f"Advanced cleanup failed: {cleanup_error}")
|
551 |
+
|
552 |
+
# Step 9: Final garbage collection
|
553 |
+
gc.collect()
|
554 |
+
|
555 |
+
logger.info("Model unloaded successfully with aggressive cleanup")
|
556 |
+
return "โ
Model unloaded with aggressive memory cleanup"
|
557 |
+
|
558 |
+
except Exception as e:
|
559 |
+
logger.error(f"Error unloading model: {str(e)}", exc_info=True)
|
560 |
+
# Emergency cleanup even if unload fails
|
561 |
+
model = None
|
562 |
+
tokenizer = None
|
563 |
+
MODEL_NAME = "No Model Loaded"
|
564 |
+
generation_metadata.clear()
|
565 |
+
|
566 |
+
# Emergency memory cleanup
|
567 |
+
for _ in range(3):
|
568 |
+
gc.collect()
|
569 |
+
if torch.cuda.is_available():
|
570 |
+
torch.cuda.empty_cache()
|
571 |
+
|
572 |
+
return f"โ Error unloading model: {str(e)} (Emergency cleanup performed)"
|
573 |
+
|
574 |
+
def cleanup_memory():
|
575 |
+
"""Enhanced memory cleanup function with PyTorch optimizations"""
|
576 |
+
try:
|
577 |
+
# Clear Python garbage
|
578 |
+
gc.collect()
|
579 |
+
|
580 |
+
# Clear CUDA cache if available
|
581 |
+
if torch.cuda.is_available():
|
582 |
+
# Multiple aggressive cleanup rounds
|
583 |
+
for i in range(3):
|
584 |
+
torch.cuda.empty_cache()
|
585 |
+
torch.cuda.synchronize()
|
586 |
+
if hasattr(torch.cuda, 'ipc_collect'):
|
587 |
+
torch.cuda.ipc_collect()
|
588 |
+
|
589 |
+
# PyTorch specific memory management
|
590 |
+
if hasattr(torch.cuda, 'reset_peak_memory_stats'):
|
591 |
+
torch.cuda.reset_peak_memory_stats()
|
592 |
+
if hasattr(torch.cuda, 'reset_accumulated_memory_stats'):
|
593 |
+
torch.cuda.reset_accumulated_memory_stats()
|
594 |
+
|
595 |
+
# Brief pause between cleanup rounds
|
596 |
+
time.sleep(0.1)
|
597 |
+
|
598 |
+
# Clear metadata deque
|
599 |
+
generation_metadata.clear()
|
600 |
+
|
601 |
+
# Force garbage collection again
|
602 |
+
gc.collect()
|
603 |
+
|
604 |
+
logger.info("Enhanced memory cleanup completed")
|
605 |
+
return "๐งน Enhanced memory cleanup completed"
|
606 |
+
except Exception as e:
|
607 |
+
logger.error(f"Memory cleanup error: {e}")
|
608 |
+
return f"Memory cleanup error: {e}"
|
609 |
+
|
610 |
+
def nuclear_memory_cleanup():
|
611 |
+
"""Nuclear option: Complete VRAM reset (use if normal unload doesn't work)"""
|
612 |
+
global model, tokenizer, MODEL_NAME
|
613 |
+
|
614 |
+
try:
|
615 |
+
logger.info("Performing nuclear memory cleanup...")
|
616 |
+
|
617 |
+
# Force unload everything
|
618 |
+
model = None
|
619 |
+
tokenizer = None
|
620 |
+
MODEL_NAME = "No Model Loaded"
|
621 |
+
generation_metadata.clear()
|
622 |
+
|
623 |
+
# Import PyTorch again to reset some internal states
|
624 |
+
import torch
|
625 |
+
|
626 |
+
# Multiple aggressive cleanup rounds
|
627 |
+
for round_num in range(10): # Very aggressive - 10 rounds
|
628 |
+
gc.collect()
|
629 |
+
|
630 |
+
if torch.cuda.is_available():
|
631 |
+
# Multiple types of CUDA cleanup
|
632 |
+
torch.cuda.empty_cache()
|
633 |
+
torch.cuda.synchronize()
|
634 |
+
|
635 |
+
# Try to reset CUDA context
|
636 |
+
try:
|
637 |
+
if hasattr(torch.cuda, 'ipc_collect'):
|
638 |
+
torch.cuda.ipc_collect()
|
639 |
+
if hasattr(torch.cuda, 'memory_summary'):
|
640 |
+
logger.info(f"Round {round_num + 1}: {torch.cuda.memory_summary()}")
|
641 |
+
except Exception:
|
642 |
+
pass
|
643 |
+
|
644 |
+
# Reset memory stats
|
645 |
+
try:
|
646 |
+
if hasattr(torch.cuda, 'reset_peak_memory_stats'):
|
647 |
+
torch.cuda.reset_peak_memory_stats()
|
648 |
+
if hasattr(torch.cuda, 'reset_accumulated_memory_stats'):
|
649 |
+
torch.cuda.reset_accumulated_memory_stats()
|
650 |
+
except Exception:
|
651 |
+
pass
|
652 |
+
|
653 |
+
time.sleep(0.1)
|
654 |
+
|
655 |
+
# Final attempt: allocate and free a small tensor to trigger cleanup
|
656 |
+
if torch.cuda.is_available():
|
657 |
+
try:
|
658 |
+
for _ in range(5):
|
659 |
+
dummy = torch.zeros(1024, 1024, device='cuda') # 4MB tensor
|
660 |
+
del dummy
|
661 |
+
torch.cuda.empty_cache()
|
662 |
+
torch.cuda.synchronize()
|
663 |
+
except Exception as nuclear_error:
|
664 |
+
logger.warning(f"Nuclear tensor cleanup failed: {nuclear_error}")
|
665 |
+
|
666 |
+
logger.info("Nuclear memory cleanup completed")
|
667 |
+
return "โข๏ธ Nuclear memory cleanup completed! VRAM should be minimal now."
|
668 |
+
|
669 |
+
except Exception as e:
|
670 |
+
logger.error(f"Nuclear cleanup error: {e}")
|
671 |
+
return f"โข๏ธ Nuclear cleanup error: {e}"
|
672 |
+
|
673 |
+
def get_memory_stats():
|
674 |
+
"""Get comprehensive VRAM usage information"""
|
675 |
+
if not torch.cuda.is_available():
|
676 |
+
return """
|
677 |
+
<div style="text-align: center; padding: 15px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 10px; color: white;">
|
678 |
+
<h3 style="margin: 0; font-size: 16px;">๐ป CPU Mode</h3>
|
679 |
+
<p style="margin: 5px 0; opacity: 0.9;">GPU not available</p>
|
680 |
+
</div>
|
681 |
+
"""
|
682 |
+
|
683 |
+
try:
|
684 |
+
torch.cuda.synchronize()
|
685 |
+
total = torch.cuda.get_device_properties(0).total_memory / (1024**3)
|
686 |
+
allocated = torch.cuda.memory_allocated(0) / (1024**3)
|
687 |
+
reserved = torch.cuda.memory_reserved(0) / (1024**3)
|
688 |
+
free = total - reserved
|
689 |
+
usage_percent = (reserved/total)*100
|
690 |
+
|
691 |
+
# Get peak memory if available
|
692 |
+
peak_allocated = 0
|
693 |
+
if hasattr(torch.cuda, 'max_memory_allocated'):
|
694 |
+
peak_allocated = torch.cuda.max_memory_allocated(0) / (1024**3)
|
695 |
+
|
696 |
+
# Dynamic color based on usage
|
697 |
+
if usage_percent < 50:
|
698 |
+
color = "#10b981" # Green
|
699 |
+
elif usage_percent < 80:
|
700 |
+
color = "#f59e0b" # Orange
|
701 |
+
else:
|
702 |
+
color = "#ef4444" # Red
|
703 |
+
|
704 |
+
return f"""
|
705 |
+
<div style="text-align: center; padding: 15px; background: linear-gradient(135deg, {color}22 0%, {color}44 100%); border: 2px solid {color}; border-radius: 10px;">
|
706 |
+
<h3 style="margin: 0; font-size: 16px; color: {color};">๐ฎ VRAM Usage</h3>
|
707 |
+
<div style="margin: 10px 0;">
|
708 |
+
<div style="background: #f3f4f6; border-radius: 8px; height: 8px; overflow: hidden;">
|
709 |
+
<div style="width: {usage_percent}%; height: 100%; background: {color}; transition: width 0.3s ease;"></div>
|
710 |
+
</div>
|
711 |
+
</div>
|
712 |
+
<p style="margin: 5px 0; font-weight: 600;">Total: {total:.2f} GB</p>
|
713 |
+
<p style="margin: 5px 0;">Allocated: {allocated:.2f} GB ({usage_percent:.1f}%)</p>
|
714 |
+
<p style="margin: 5px 0;">Reserved: {reserved:.2f} GB</p>
|
715 |
+
<p style="margin: 5px 0;">Free: {free:.2f} GB</p>
|
716 |
+
<p style="margin: 5px 0; font-size: 12px; opacity: 0.8;">Peak: {peak_allocated:.2f} GB</p>
|
717 |
+
<p style="margin: 5px 0; font-size: 10px; opacity: 0.6;">RAM-Saving Streamer Active</p>
|
718 |
+
</div>
|
719 |
+
"""
|
720 |
+
except Exception as e:
|
721 |
+
logger.error(f"Error getting memory stats: {str(e)}")
|
722 |
+
return f"""
|
723 |
+
<div style="text-align: center; padding: 15px; background: #fee2e2; border: 2px solid #ef4444; border-radius: 10px;">
|
724 |
+
<h3 style="margin: 0; color: #ef4444;">โ Error</h3>
|
725 |
+
<p style="margin: 5px 0;">{str(e)}</p>
|
726 |
+
</div>
|
727 |
+
"""
|
728 |
+
|
729 |
+
def process_latex_content(text):
|
730 |
+
"""Enhanced LaTeX processing for streaming without UI glitches"""
|
731 |
+
# Don't process LaTeX here - let Gradio handle it natively
|
732 |
+
# Just return the text as-is for now
|
733 |
+
return text
|
734 |
+
|
735 |
+
def process_think_tags(text):
|
736 |
+
"""Process thinking tags with progressive streaming support"""
|
737 |
+
# Check if we're in the middle of generating a think section
|
738 |
+
if '<think>' in text and '</think>' not in text:
|
739 |
+
# We're currently generating inside a think section
|
740 |
+
parts = text.split('<think>')
|
741 |
+
if len(parts) == 2:
|
742 |
+
before_think = parts[0]
|
743 |
+
thinking_content = parts[1]
|
744 |
+
|
745 |
+
# Create a progressive thinking display
|
746 |
+
formatted_thinking = f"""
|
747 |
+
<div style="background: linear-gradient(135deg, #e0e7ff 0%, #c7d2fe 100%); border-left: 4px solid #6366f1; padding: 12px; margin: 8px 0; border-radius: 8px;">
|
748 |
+
<div style="display: flex; align-items: center; margin-bottom: 8px;">
|
749 |
+
<span style="font-size: 16px; margin-right: 8px;">๐ค</span>
|
750 |
+
<strong style="color: #4338ca;">Thinking...</strong>
|
751 |
+
</div>
|
752 |
+
<div style="color: #475569; font-style: italic;">{thinking_content}</div>
|
753 |
+
</div>
|
754 |
+
|
755 |
+
"""
|
756 |
+
return before_think + formatted_thinking
|
757 |
+
|
758 |
+
# Handle completed think sections
|
759 |
+
think_pattern = re.compile(r'<think>(.*?)</think>', re.DOTALL)
|
760 |
+
|
761 |
+
def replace_think(match):
|
762 |
+
think_content = match.group(1).strip()
|
763 |
+
return f"""
|
764 |
+
<div style="background: linear-gradient(135deg, #e0e7ff 0%, #c7d2fe 100%); border-left: 4px solid #6366f1; padding: 12px; margin: 8px 0; border-radius: 8px;">
|
765 |
+
<div style="display: flex; align-items: center; margin-bottom: 8px;">
|
766 |
+
<span style="font-size: 16px; margin-right: 8px;">๐ค</span>
|
767 |
+
<strong style="color: #4338ca;">Thinking...</strong>
|
768 |
+
</div>
|
769 |
+
<div style="color: #475569; font-style: italic;">{think_content}</div>
|
770 |
+
</div>
|
771 |
+
|
772 |
+
"""
|
773 |
+
|
774 |
+
# Replace completed <think> tags with formatted version
|
775 |
+
processed_text = think_pattern.sub(replace_think, text)
|
776 |
+
|
777 |
+
return processed_text
|
778 |
+
|
779 |
+
def calculate_generation_metrics(start_time, total_tokens):
|
780 |
+
"""Calculate generation metrics"""
|
781 |
+
end_time = time.time()
|
782 |
+
generation_time = end_time - start_time
|
783 |
+
tokens_per_second = total_tokens / generation_time if generation_time > 0 else 0
|
784 |
+
|
785 |
+
return {
|
786 |
+
"generation_time": generation_time,
|
787 |
+
"total_tokens": total_tokens,
|
788 |
+
"tokens_per_second": tokens_per_second,
|
789 |
+
"model_name": MODEL_NAME
|
790 |
+
}
|
791 |
+
|
792 |
+
def format_metadata_tooltip(metadata):
|
793 |
+
"""Format metadata for tooltip display"""
|
794 |
+
return f"""Model: {metadata['model_name']}
|
795 |
+
Tokens: {metadata['total_tokens']}
|
796 |
+
Speed: {metadata['tokens_per_second']:.2f} tok/s
|
797 |
+
Time: {metadata['generation_time']:.2f}s"""
|
798 |
+
|
799 |
+
def add_metadata_to_response(response_text, metadata):
|
800 |
+
"""Add metadata icon with tooltip to the response"""
|
801 |
+
tooltip_content = format_metadata_tooltip(metadata)
|
802 |
+
|
803 |
+
# Create a metadata icon with tooltip using HTML
|
804 |
+
metadata_html = f"""
|
805 |
+
<div style="position: relative; display: inline-block; margin-left: 8px;">
|
806 |
+
<span class="metadata-icon" style="cursor: help; opacity: 0.6; font-size: 14px;" title="{tooltip_content}">โน๏ธ</span>
|
807 |
+
</div>
|
808 |
+
"""
|
809 |
+
|
810 |
+
# Add metadata icon at the end of the response
|
811 |
+
return response_text + "\n\n" + metadata_html
|
812 |
+
|
813 |
+
def chat_with_model(message, history, system_prompt, temp, top_p_val, top_k_val, rep_penalty_val, memory_opt):
|
814 |
+
"""
|
815 |
+
Enhanced chat function with RAM-saving streamer and improved memory management.
|
816 |
+
Uses direct generation approach for better memory control and VRAM efficiency.
|
817 |
+
"""
|
818 |
+
global model, tokenizer, generation_metadata
|
819 |
+
|
820 |
+
# Check if model is loaded
|
821 |
+
if model is None or tokenizer is None:
|
822 |
+
return "โ Model not loaded. Please load the model first."
|
823 |
+
|
824 |
+
# Initialize variables for cleanup
|
825 |
+
input_ids = None
|
826 |
+
streamer = None
|
827 |
+
|
828 |
+
try:
|
829 |
+
# Record start time for metrics
|
830 |
+
start_time = time.time()
|
831 |
+
token_count = 0
|
832 |
+
|
833 |
+
# Format conversation for model
|
834 |
+
messages = [{"role": "system", "content": system_prompt}]
|
835 |
+
|
836 |
+
# Add chat history - HANDLE BOTH FORMATS (tuples from original and dicts from new)
|
837 |
+
for h in history:
|
838 |
+
if isinstance(h, dict):
|
839 |
+
# New dict format
|
840 |
+
if h.get("role") == "user":
|
841 |
+
messages.append({"role": "user", "content": h["content"]})
|
842 |
+
elif h.get("role") == "assistant":
|
843 |
+
messages.append({"role": "assistant", "content": h["content"]})
|
844 |
+
else:
|
845 |
+
# Original tuple format (user_msg, bot_msg)
|
846 |
+
if len(h) >= 2:
|
847 |
+
messages.append({"role": "user", "content": h[0]})
|
848 |
+
if h[1] is not None:
|
849 |
+
messages.append({"role": "assistant", "content": h[1]})
|
850 |
+
|
851 |
+
# Add the current message
|
852 |
+
messages.append({"role": "user", "content": message})
|
853 |
+
|
854 |
+
# Wrap generation in torch.no_grad() to prevent gradient accumulation
|
855 |
+
with torch.no_grad():
|
856 |
+
# Create model input with memory-efficient approach
|
857 |
+
input_ids = tokenizer.apply_chat_template(
|
858 |
+
messages,
|
859 |
+
tokenize=True,
|
860 |
+
add_generation_prompt=True,
|
861 |
+
return_tensors="pt"
|
862 |
+
)
|
863 |
+
|
864 |
+
# Handle edge case
|
865 |
+
if input_ids.ndim == 1:
|
866 |
+
input_ids = input_ids.unsqueeze(0)
|
867 |
+
|
868 |
+
# Move to device
|
869 |
+
input_ids = input_ids.to(model.device)
|
870 |
+
|
871 |
+
# Setup RAM-saving streamer
|
872 |
+
streamer = RAMSavingIteratorStreamer(
|
873 |
+
tokenizer,
|
874 |
+
skip_special_tokens=True,
|
875 |
+
skip_prompt=True,
|
876 |
+
timeout=1.0
|
877 |
+
)
|
878 |
+
|
879 |
+
# Set prompt length for the streamer
|
880 |
+
streamer.set_prompt_length(input_ids.shape[1])
|
881 |
+
|
882 |
+
# Pre-generation memory cleanup (only if memory optimization is on)
|
883 |
+
if memory_opt:
|
884 |
+
gc.collect()
|
885 |
+
if torch.cuda.is_available():
|
886 |
+
torch.cuda.empty_cache()
|
887 |
+
|
888 |
+
# Conditional generation parameters based on memory optimization
|
889 |
+
gen_kwargs = {
|
890 |
+
"input_ids": input_ids,
|
891 |
+
"max_new_tokens": MAX_LENGTH,
|
892 |
+
"temperature": temp,
|
893 |
+
"top_p": top_p_val,
|
894 |
+
"top_k": top_k_val,
|
895 |
+
"repetition_penalty": rep_penalty_val,
|
896 |
+
"do_sample": temp > 0,
|
897 |
+
"streamer": streamer,
|
898 |
+
"use_cache": not memory_opt, # Disable cache only if memory optimization is on
|
899 |
+
}
|
900 |
+
|
901 |
+
# Generate in a thread for real-time streaming
|
902 |
+
thread = Thread(
|
903 |
+
target=model.generate,
|
904 |
+
kwargs=gen_kwargs,
|
905 |
+
daemon=True
|
906 |
+
)
|
907 |
+
thread.start()
|
908 |
+
|
909 |
+
# Stream the response with conditional memory management
|
910 |
+
partial_text = ""
|
911 |
+
try:
|
912 |
+
for new_text in streamer:
|
913 |
+
partial_text += new_text
|
914 |
+
token_count += 1
|
915 |
+
|
916 |
+
# Process the text to handle think tags while preserving LaTeX
|
917 |
+
processed_text = process_think_tags(partial_text)
|
918 |
+
|
919 |
+
yield processed_text
|
920 |
+
|
921 |
+
# Conditional cleanup based on memory optimization setting (less frequent)
|
922 |
+
if memory_opt and token_count % 150 == 0: # Reduced frequency for performance
|
923 |
+
gc.collect() # Only light cleanup if memory optimization is on
|
924 |
+
|
925 |
+
except StopIteration:
|
926 |
+
# Normal end of generation
|
927 |
+
pass
|
928 |
+
except Exception as stream_error:
|
929 |
+
logger.error(f"Streaming error: {stream_error}")
|
930 |
+
yield f"โ Streaming error: {stream_error}"
|
931 |
+
return
|
932 |
+
|
933 |
+
finally:
|
934 |
+
# Add metadata to final response
|
935 |
+
try:
|
936 |
+
metrics = calculate_generation_metrics(start_time, token_count)
|
937 |
+
partial_text = add_metadata_to_response(partial_text, metrics)
|
938 |
+
except Exception as e:
|
939 |
+
logger.warning(f"Couldn't add metadata: {str(e)}")
|
940 |
+
|
941 |
+
yield partial_text
|
942 |
+
|
943 |
+
# Ensure thread completion
|
944 |
+
if thread.is_alive():
|
945 |
+
thread.join(timeout=5.0)
|
946 |
+
if thread.is_alive():
|
947 |
+
logger.warning("Generation thread did not complete in time")
|
948 |
+
|
949 |
+
# Calculate generation metrics
|
950 |
+
try:
|
951 |
+
metrics = calculate_generation_metrics(start_time, token_count)
|
952 |
+
|
953 |
+
# Store metadata (using deque with max size to prevent memory leaks)
|
954 |
+
generation_metadata.append(metrics)
|
955 |
+
|
956 |
+
# Log the metrics
|
957 |
+
logger.info(f"Generation metrics - Tokens: {metrics['total_tokens']}, Speed: {metrics['tokens_per_second']:.2f} tok/s, Time: {metrics['generation_time']:.2f}s")
|
958 |
+
except Exception as metrics_error:
|
959 |
+
logger.warning(f"Error calculating metrics: {metrics_error}")
|
960 |
+
|
961 |
+
# Final cleanup
|
962 |
+
try:
|
963 |
+
# Clean up streamer
|
964 |
+
if streamer:
|
965 |
+
streamer.cleanup()
|
966 |
+
del streamer
|
967 |
+
streamer = None
|
968 |
+
|
969 |
+
# Clean up input tensors
|
970 |
+
if input_ids is not None:
|
971 |
+
del input_ids
|
972 |
+
input_ids = None
|
973 |
+
|
974 |
+
# Conditional cleanup based on memory optimization setting
|
975 |
+
if memory_opt:
|
976 |
+
# Aggressive cleanup only if memory optimization is enabled
|
977 |
+
if torch.cuda.is_available():
|
978 |
+
for _ in range(2): # Reduced rounds for performance
|
979 |
+
torch.cuda.empty_cache()
|
980 |
+
torch.cuda.synchronize()
|
981 |
+
# Force garbage collection
|
982 |
+
for _ in range(2):
|
983 |
+
gc.collect()
|
984 |
+
else:
|
985 |
+
# Light cleanup for performance mode
|
986 |
+
gc.collect()
|
987 |
+
if torch.cuda.is_available():
|
988 |
+
torch.cuda.empty_cache()
|
989 |
+
|
990 |
+
logger.info(f"Generation completed, {token_count} tokens, memory_opt: {memory_opt}, VRAM saved with RAM-saving streamer")
|
991 |
+
|
992 |
+
except Exception as cleanup_error:
|
993 |
+
logger.warning(f"Final cleanup warning: {cleanup_error}")
|
994 |
+
|
995 |
+
except Exception as e:
|
996 |
+
logger.error(f"Error in chat_with_model: {str(e)}", exc_info=True)
|
997 |
+
|
998 |
+
# Emergency cleanup
|
999 |
+
try:
|
1000 |
+
if streamer:
|
1001 |
+
streamer.cleanup()
|
1002 |
+
del streamer
|
1003 |
+
if input_ids is not None:
|
1004 |
+
del input_ids
|
1005 |
+
gc.collect()
|
1006 |
+
if torch.cuda.is_available():
|
1007 |
+
torch.cuda.empty_cache()
|
1008 |
+
except Exception as emergency_cleanup_error:
|
1009 |
+
logger.error(f"Emergency cleanup failed: {emergency_cleanup_error}")
|
1010 |
+
|
1011 |
+
yield f"โ Error: {str(e)}"
|
1012 |
+
|
1013 |
+
def update_model_name():
|
1014 |
+
"""Update the displayed model name"""
|
1015 |
+
return f"๐ฎ AI Chat Assistant ({MODEL_NAME})"
|
1016 |
+
|
1017 |
+
def add_page_refresh_warning():
|
1018 |
+
"""Add JavaScript to warn about page refresh when model is loaded"""
|
1019 |
+
return """
|
1020 |
+
<script>
|
1021 |
+
window.addEventListener('beforeunload', function (e) {
|
1022 |
+
// Check if model is loaded by looking for specific text in the page
|
1023 |
+
const statusElements = document.querySelectorAll('input[type="text"], textarea');
|
1024 |
+
let modelLoaded = false;
|
1025 |
+
|
1026 |
+
statusElements.forEach(element => {
|
1027 |
+
if (element.value && element.value.includes('Model loaded successfully')) {
|
1028 |
+
modelLoaded = true;
|
1029 |
+
}
|
1030 |
+
});
|
1031 |
+
|
1032 |
+
if (modelLoaded) {
|
1033 |
+
e.preventDefault();
|
1034 |
+
e.returnValue = 'A model is currently loaded. Are you sure you want to leave?';
|
1035 |
+
return 'A model is currently loaded. Are you sure you want to leave?';
|
1036 |
+
}
|
1037 |
+
});
|
1038 |
+
</script>
|
1039 |
+
"""
|
1040 |
+
|
1041 |
+
# Custom CSS for elegant styling with fixed dropdown behavior
|
1042 |
+
custom_css = """
|
1043 |
+
/* Main container styling */
|
1044 |
+
.gradio-container {
|
1045 |
+
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', sans-serif !important;
|
1046 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
1047 |
+
min-height: 100vh;
|
1048 |
+
}
|
1049 |
+
|
1050 |
+
/* Header styling */
|
1051 |
+
.header-text {
|
1052 |
+
background: rgba(255, 255, 255, 0.95);
|
1053 |
+
backdrop-filter: blur(10px);
|
1054 |
+
border-radius: 15px;
|
1055 |
+
padding: 20px;
|
1056 |
+
margin: 20px 0;
|
1057 |
+
text-align: center;
|
1058 |
+
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1);
|
1059 |
+
border: 1px solid rgba(255, 255, 255, 0.2);
|
1060 |
+
}
|
1061 |
+
|
1062 |
+
/* Chat interface styling */
|
1063 |
+
.chat-container {
|
1064 |
+
background: rgba(255, 255, 255, 0.95) !important;
|
1065 |
+
border-radius: 20px !important;
|
1066 |
+
box-shadow: 0 20px 40px rgba(0, 0, 0, 0.1) !important;
|
1067 |
+
border: 1px solid rgba(255, 255, 255, 0.2) !important;
|
1068 |
+
backdrop-filter: blur(10px) !important;
|
1069 |
+
}
|
1070 |
+
|
1071 |
+
/* Control panel styling */
|
1072 |
+
.control-panel {
|
1073 |
+
background: rgba(255, 255, 255, 0.9) !important;
|
1074 |
+
border-radius: 15px !important;
|
1075 |
+
padding: 20px !important;
|
1076 |
+
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.1) !important;
|
1077 |
+
border: 1px solid rgba(255, 255, 255, 0.3) !important;
|
1078 |
+
backdrop-filter: blur(10px) !important;
|
1079 |
+
overflow: visible !important; /* Allow dropdowns to overflow */
|
1080 |
+
}
|
1081 |
+
|
1082 |
+
/* Button styling */
|
1083 |
+
.btn-primary {
|
1084 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
1085 |
+
border: none !important;
|
1086 |
+
border-radius: 10px !important;
|
1087 |
+
color: white !important;
|
1088 |
+
font-weight: 600 !important;
|
1089 |
+
transition: all 0.3s ease !important;
|
1090 |
+
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4) !important;
|
1091 |
+
}
|
1092 |
+
|
1093 |
+
.btn-primary:hover {
|
1094 |
+
transform: translateY(-2px) !important;
|
1095 |
+
box-shadow: 0 8px 25px rgba(102, 126, 234, 0.6) !important;
|
1096 |
+
}
|
1097 |
+
|
1098 |
+
.btn-secondary {
|
1099 |
+
background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%) !important;
|
1100 |
+
border: none !important;
|
1101 |
+
border-radius: 10px !important;
|
1102 |
+
color: white !important;
|
1103 |
+
font-weight: 600 !important;
|
1104 |
+
transition: all 0.3s ease !important;
|
1105 |
+
}
|
1106 |
+
|
1107 |
+
/* Input field styling */
|
1108 |
+
.input-field {
|
1109 |
+
border-radius: 10px !important;
|
1110 |
+
border: 2px solid rgba(102, 126, 234, 0.2) !important;
|
1111 |
+
transition: all 0.3s ease !important;
|
1112 |
+
}
|
1113 |
+
|
1114 |
+
.input-field:focus {
|
1115 |
+
border-color: #667eea !important;
|
1116 |
+
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important;
|
1117 |
+
}
|
1118 |
+
|
1119 |
+
/* Dropdown fixes */
|
1120 |
+
.dropdown-container {
|
1121 |
+
position: relative !important;
|
1122 |
+
z-index: 1000 !important;
|
1123 |
+
overflow: visible !important;
|
1124 |
+
}
|
1125 |
+
|
1126 |
+
/* Fix dropdown menu positioning and styling */
|
1127 |
+
.dropdown select,
|
1128 |
+
.dropdown-menu,
|
1129 |
+
.svelte-select,
|
1130 |
+
.svelte-select-list {
|
1131 |
+
position: relative !important;
|
1132 |
+
z-index: 1001 !important;
|
1133 |
+
background: white !important;
|
1134 |
+
border: 2px solid rgba(102, 126, 234, 0.2) !important;
|
1135 |
+
border-radius: 10px !important;
|
1136 |
+
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.15) !important;
|
1137 |
+
max-height: 200px !important;
|
1138 |
+
overflow-y: auto !important;
|
1139 |
+
}
|
1140 |
+
|
1141 |
+
/* Fix dropdown option styling */
|
1142 |
+
.dropdown option,
|
1143 |
+
.svelte-select-option {
|
1144 |
+
padding: 8px 12px !important;
|
1145 |
+
background: white !important;
|
1146 |
+
color: #333 !important;
|
1147 |
+
border: none !important;
|
1148 |
+
}
|
1149 |
+
|
1150 |
+
.dropdown option:hover,
|
1151 |
+
.svelte-select-option:hover {
|
1152 |
+
background: #f0f0f0 !important;
|
1153 |
+
color: #667eea !important;
|
1154 |
+
}
|
1155 |
+
|
1156 |
+
/* Ensure dropdown arrow is clickable */
|
1157 |
+
.dropdown::after,
|
1158 |
+
.dropdown-arrow {
|
1159 |
+
pointer-events: none !important;
|
1160 |
+
z-index: 1002 !important;
|
1161 |
+
}
|
1162 |
+
|
1163 |
+
/* Fix any overflow issues in parent containers */
|
1164 |
+
.gradio-group,
|
1165 |
+
.gradio-column {
|
1166 |
+
overflow: visible !important;
|
1167 |
+
}
|
1168 |
+
|
1169 |
+
/* Accordion styling */
|
1170 |
+
.accordion {
|
1171 |
+
border-radius: 10px !important;
|
1172 |
+
border: 1px solid rgba(102, 126, 234, 0.2) !important;
|
1173 |
+
overflow: visible !important; /* Allow dropdowns to overflow accordion */
|
1174 |
+
}
|
1175 |
+
|
1176 |
+
/* Status indicators */
|
1177 |
+
.status-success {
|
1178 |
+
color: #10b981 !important;
|
1179 |
+
font-weight: 600 !important;
|
1180 |
+
}
|
1181 |
+
|
1182 |
+
.status-error {
|
1183 |
+
color: #ef4444 !important;
|
1184 |
+
font-weight: 600 !important;
|
1185 |
+
}
|
1186 |
+
|
1187 |
+
/* Reduced transition frequency to avoid conflicts */
|
1188 |
+
.gradio-container * {
|
1189 |
+
transition: background-color 0.3s ease, border-color 0.3s ease !important;
|
1190 |
+
}
|
1191 |
+
|
1192 |
+
/* Chat bubble styling */
|
1193 |
+
.message {
|
1194 |
+
border-radius: 18px !important;
|
1195 |
+
padding: 12px 16px !important;
|
1196 |
+
margin: 8px 0 !important;
|
1197 |
+
max-width: 80% !important;
|
1198 |
+
}
|
1199 |
+
|
1200 |
+
.user-message {
|
1201 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
1202 |
+
color: white !important;
|
1203 |
+
margin-left: auto !important;
|
1204 |
+
}
|
1205 |
+
|
1206 |
+
.bot-message {
|
1207 |
+
background: #f8fafc !important;
|
1208 |
+
border: 1px solid #e2e8f0 !important;
|
1209 |
+
}
|
1210 |
+
|
1211 |
+
/* Metadata tooltip styling - Enhanced */
|
1212 |
+
.metadata-icon {
|
1213 |
+
display: inline-block;
|
1214 |
+
margin-left: 8px;
|
1215 |
+
cursor: help;
|
1216 |
+
opacity: 0.6;
|
1217 |
+
transition: opacity 0.3s ease, transform 0.2s ease;
|
1218 |
+
font-size: 14px;
|
1219 |
+
user-select: none;
|
1220 |
+
vertical-align: middle;
|
1221 |
+
}
|
1222 |
+
|
1223 |
+
.metadata-icon:hover {
|
1224 |
+
opacity: 1;
|
1225 |
+
transform: scale(1.1);
|
1226 |
+
}
|
1227 |
+
|
1228 |
+
/* Enhanced tooltip styling */
|
1229 |
+
.metadata-icon[title]:hover::after {
|
1230 |
+
content: attr(title);
|
1231 |
+
position: absolute;
|
1232 |
+
bottom: 100%;
|
1233 |
+
left: 50%;
|
1234 |
+
transform: translateX(-50%);
|
1235 |
+
background: rgba(0, 0, 0, 0.9);
|
1236 |
+
color: white;
|
1237 |
+
padding: 8px 12px;
|
1238 |
+
border-radius: 6px;
|
1239 |
+
font-size: 12px;
|
1240 |
+
white-space: pre-line;
|
1241 |
+
z-index: 1000;
|
1242 |
+
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.3);
|
1243 |
+
margin-bottom: 5px;
|
1244 |
+
min-width: 200px;
|
1245 |
+
text-align: left;
|
1246 |
+
}
|
1247 |
+
|
1248 |
+
.metadata-icon[title]:hover::before {
|
1249 |
+
content: '';
|
1250 |
+
position: absolute;
|
1251 |
+
bottom: 100%;
|
1252 |
+
left: 50%;
|
1253 |
+
transform: translateX(-50%);
|
1254 |
+
border: 5px solid transparent;
|
1255 |
+
border-top-color: rgba(0, 0, 0, 0.9);
|
1256 |
+
z-index: 1001;
|
1257 |
+
}
|
1258 |
+
|
1259 |
+
/* Compact system prompt */
|
1260 |
+
.compact-prompt {
|
1261 |
+
min-height: 40px !important;
|
1262 |
+
transition: min-height 0.3s ease !important;
|
1263 |
+
}
|
1264 |
+
|
1265 |
+
.compact-prompt:focus {
|
1266 |
+
min-height: 80px !important;
|
1267 |
+
}
|
1268 |
+
"""
|
1269 |
+
|
1270 |
+
# Main application
|
1271 |
+
with gr.Blocks(css=custom_css, title="๐ฎ AI Chat Assistant") as demo:
|
1272 |
+
# Add page refresh warning script
|
1273 |
+
gr.HTML(add_page_refresh_warning())
|
1274 |
+
|
1275 |
+
# Header
|
1276 |
+
with gr.Row():
|
1277 |
+
title = gr.Markdown("# ๐ฎ AI Chat Assistant (No Model Loaded)", elem_classes="header-text")
|
1278 |
+
|
1279 |
+
with gr.Row(equal_height=True):
|
1280 |
+
# Main chat area (left side - 70% width)
|
1281 |
+
with gr.Column(scale=7, elem_classes="chat-container"):
|
1282 |
+
# Compact system prompt (changed from 4 lines to 1)
|
1283 |
+
system_prompt = gr.Textbox(
|
1284 |
+
label="๐ฏ System Prompt",
|
1285 |
+
value="You are a helpful AI assistant.",
|
1286 |
+
lines=1, # Changed from 4 to 1
|
1287 |
+
elem_classes="input-field compact-prompt"
|
1288 |
+
)
|
1289 |
+
|
1290 |
+
# Generation settings in accordion
|
1291 |
+
with gr.Accordion("โ๏ธ Generation Settings", open=False, elem_classes="accordion"):
|
1292 |
+
with gr.Row():
|
1293 |
+
temperature = gr.Slider(0.0, 2.0, DEFAULT_TEMPERATURE, step=0.05, label="๐ก๏ธ Temperature")
|
1294 |
+
top_p = gr.Slider(0.0, 1.0, DEFAULT_TOP_P, step=0.01, label="๐ฏ Top-p")
|
1295 |
+
with gr.Row():
|
1296 |
+
top_k = gr.Slider(1, 200, DEFAULT_TOP_K, step=1, label="๐ Top-k")
|
1297 |
+
rep_penalty = gr.Slider(1.0, 2.0, DEFAULT_REP_PENALTY, step=0.01, label="๐ Repetition Penalty")
|
1298 |
+
|
1299 |
+
# Memory optimization for chat (moved here to be defined before use)
|
1300 |
+
memory_opt_chat = gr.Checkbox(
|
1301 |
+
label="๐ง Memory Optimization for Chat",
|
1302 |
+
value=True,
|
1303 |
+
info="Use memory optimization during chat generation (disables KV cache)"
|
1304 |
+
)
|
1305 |
+
|
1306 |
+
# Chat interface using original gr.ChatInterface for fast streaming and stop button
|
1307 |
+
chatbot = gr.Chatbot(
|
1308 |
+
height=500,
|
1309 |
+
latex_delimiters=[
|
1310 |
+
{"left": "$", "right": "$", "display": True},
|
1311 |
+
{"left": "$", "right": "$", "display": False},
|
1312 |
+
{"left": "\\(", "right": "\\)", "display": False},
|
1313 |
+
{"left": "\\[", "right": "\\]", "display": True}
|
1314 |
+
],
|
1315 |
+
show_copy_button=True,
|
1316 |
+
avatar_images=("๐ค", "๐ค"),
|
1317 |
+
type="messages",
|
1318 |
+
render_markdown=True
|
1319 |
+
)
|
1320 |
+
|
1321 |
+
chat_interface = gr.ChatInterface(
|
1322 |
+
fn=chat_with_model,
|
1323 |
+
chatbot=chatbot,
|
1324 |
+
additional_inputs=[system_prompt, temperature, top_p, top_k, rep_penalty, memory_opt_chat],
|
1325 |
+
type="messages",
|
1326 |
+
submit_btn="Send ๐ค",
|
1327 |
+
stop_btn="โน๏ธ Stop"
|
1328 |
+
)
|
1329 |
+
|
1330 |
+
# Control panel (right side - 30% width)
|
1331 |
+
with gr.Column(scale=3, elem_classes="control-panel"):
|
1332 |
+
# Model status and controls
|
1333 |
+
with gr.Group():
|
1334 |
+
gr.Markdown("### ๐ Model Controls")
|
1335 |
+
|
1336 |
+
with gr.Row():
|
1337 |
+
load_btn = gr.Button("๐ Load Model", variant="primary", elem_classes="btn-primary")
|
1338 |
+
unload_btn = gr.Button("๐๏ธ Unload", variant="secondary", elem_classes="btn-secondary")
|
1339 |
+
|
1340 |
+
model_status = gr.Textbox(
|
1341 |
+
label="๐ Status",
|
1342 |
+
value="Model not loaded",
|
1343 |
+
interactive=False,
|
1344 |
+
elem_classes="input-field"
|
1345 |
+
)
|
1346 |
+
|
1347 |
+
progress_display = gr.Textbox(
|
1348 |
+
label="๐ Progress",
|
1349 |
+
value="Ready to load model",
|
1350 |
+
interactive=False,
|
1351 |
+
elem_classes="input-field"
|
1352 |
+
)
|
1353 |
+
|
1354 |
+
# Model selection
|
1355 |
+
with gr.Group():
|
1356 |
+
gr.Markdown("### ๐๏ธ Model Selection")
|
1357 |
+
|
1358 |
+
model_source = gr.Radio(
|
1359 |
+
choices=["Hugging Face Model", "Local Path"],
|
1360 |
+
value="Local Path", # Changed default to Local Path
|
1361 |
+
label="๐ Model Source"
|
1362 |
+
)
|
1363 |
+
|
1364 |
+
# HF Model search and selection (initially hidden)
|
1365 |
+
with gr.Group(visible=False) as hf_group:
|
1366 |
+
model_search = gr.Textbox(
|
1367 |
+
label="๐ Search Models",
|
1368 |
+
placeholder="e.g., microsoft/Phi-3, meta-llama/Llama-3, ykarout/your-model",
|
1369 |
+
elem_classes="input-field"
|
1370 |
+
)
|
1371 |
+
|
1372 |
+
hf_model = gr.Dropdown(
|
1373 |
+
label="๐ Select Model",
|
1374 |
+
choices=[],
|
1375 |
+
interactive=True,
|
1376 |
+
elem_classes="input-field dropdown-container",
|
1377 |
+
allow_custom_value=True, # Allow typing custom model names
|
1378 |
+
filterable=True # Enable filtering
|
1379 |
+
)
|
1380 |
+
|
1381 |
+
# Local path group (visible by default)
|
1382 |
+
with gr.Group(visible=True) as local_group:
|
1383 |
+
local_path = gr.Textbox(
|
1384 |
+
value=LOCAL_MODELS_BASE, # Changed default to new base location
|
1385 |
+
label="๐ Local Models Base Path",
|
1386 |
+
elem_classes="input-field"
|
1387 |
+
)
|
1388 |
+
|
1389 |
+
# Button to refresh local models
|
1390 |
+
refresh_local_btn = gr.Button("๐ Scan Local Models", elem_classes="btn-secondary")
|
1391 |
+
|
1392 |
+
# Dropdown for local models with better configuration
|
1393 |
+
local_models_dropdown = gr.Dropdown(
|
1394 |
+
label="๐ Available Local Models",
|
1395 |
+
choices=[],
|
1396 |
+
interactive=True,
|
1397 |
+
elem_classes="input-field dropdown-container",
|
1398 |
+
allow_custom_value=False, # Don't allow custom for local models
|
1399 |
+
filterable=True # Enable filtering
|
1400 |
+
)
|
1401 |
+
|
1402 |
+
quantization = gr.Radio(
|
1403 |
+
choices=["4bit", "8bit", "bf16", "f16"],
|
1404 |
+
value="4bit",
|
1405 |
+
label="โก Quantization"
|
1406 |
+
)
|
1407 |
+
|
1408 |
+
# Advanced memory optimization toggle
|
1409 |
+
memory_optimization = gr.Checkbox(
|
1410 |
+
label="๐ง Advanced Memory Optimization",
|
1411 |
+
value=True,
|
1412 |
+
info="Reduces VRAM usage but may slightly impact speed"
|
1413 |
+
)
|
1414 |
+
|
1415 |
+
# Note: Memory optimization for chat is now in Generation Settings
|
1416 |
+
|
1417 |
+
# Memory stats with cleanup buttons
|
1418 |
+
with gr.Group():
|
1419 |
+
gr.Markdown("### ๐พ System Status")
|
1420 |
+
memory_info = gr.HTML()
|
1421 |
+
with gr.Row():
|
1422 |
+
refresh_btn = gr.Button("โป Refresh Stats", elem_classes="btn-secondary")
|
1423 |
+
cleanup_btn = gr.Button("๐งน Clean Memory", elem_classes="btn-secondary")
|
1424 |
+
with gr.Row():
|
1425 |
+
nuclear_btn = gr.Button("โข๏ธ Nuclear Cleanup", elem_classes="btn-secondary", variant="stop")
|
1426 |
+
|
1427 |
+
# Event handlers
|
1428 |
+
|
1429 |
+
# Model search functionality for HF
|
1430 |
+
model_search.change(
|
1431 |
+
update_model_dropdown,
|
1432 |
+
inputs=[model_search],
|
1433 |
+
outputs=[hf_model]
|
1434 |
+
)
|
1435 |
+
|
1436 |
+
# Show/hide model selection based on source
|
1437 |
+
def toggle_model_source(choice):
|
1438 |
+
return (
|
1439 |
+
gr.Group(visible=choice == "Hugging Face Model"),
|
1440 |
+
gr.Group(visible=choice == "Local Path")
|
1441 |
+
)
|
1442 |
+
|
1443 |
+
model_source.change(
|
1444 |
+
toggle_model_source,
|
1445 |
+
inputs=[model_source],
|
1446 |
+
outputs=[hf_group, local_group]
|
1447 |
+
)
|
1448 |
+
|
1449 |
+
# Local model scanning
|
1450 |
+
refresh_local_btn.click(
|
1451 |
+
update_local_models_dropdown,
|
1452 |
+
inputs=[local_path],
|
1453 |
+
outputs=[local_models_dropdown]
|
1454 |
+
)
|
1455 |
+
|
1456 |
+
# Auto-scan on path change
|
1457 |
+
local_path.change(
|
1458 |
+
update_local_models_dropdown,
|
1459 |
+
inputs=[local_path],
|
1460 |
+
outputs=[local_models_dropdown]
|
1461 |
+
)
|
1462 |
+
|
1463 |
+
# Model loading with progress
|
1464 |
+
load_btn.click(
|
1465 |
+
load_model_with_progress,
|
1466 |
+
inputs=[model_source, hf_model, local_path, local_models_dropdown, quantization, memory_optimization],
|
1467 |
+
outputs=[progress_display]
|
1468 |
+
).then(
|
1469 |
+
lambda: "โ
Model loaded successfully!" if model is not None else "โ Model loading failed",
|
1470 |
+
outputs=[model_status]
|
1471 |
+
).then(
|
1472 |
+
get_memory_stats,
|
1473 |
+
outputs=[memory_info]
|
1474 |
+
).then(
|
1475 |
+
update_model_name,
|
1476 |
+
outputs=[title]
|
1477 |
+
)
|
1478 |
+
|
1479 |
+
# Model unloading
|
1480 |
+
unload_btn.click(
|
1481 |
+
unload_model,
|
1482 |
+
outputs=[model_status]
|
1483 |
+
).then(
|
1484 |
+
lambda: "Ready to load model",
|
1485 |
+
outputs=[progress_display]
|
1486 |
+
).then(
|
1487 |
+
get_memory_stats,
|
1488 |
+
outputs=[memory_info]
|
1489 |
+
).then(
|
1490 |
+
lambda: "# ๐ฎ AI Chat Assistant (No Model Loaded)",
|
1491 |
+
outputs=[title]
|
1492 |
+
)
|
1493 |
+
|
1494 |
+
# Refresh memory stats
|
1495 |
+
refresh_btn.click(get_memory_stats, outputs=[memory_info])
|
1496 |
+
|
1497 |
+
# Manual memory cleanup
|
1498 |
+
cleanup_btn.click(cleanup_memory, outputs=[]).then(
|
1499 |
+
get_memory_stats, outputs=[memory_info]
|
1500 |
+
)
|
1501 |
+
|
1502 |
+
# Nuclear memory cleanup
|
1503 |
+
nuclear_btn.click(nuclear_memory_cleanup, outputs=[]).then(
|
1504 |
+
get_memory_stats, outputs=[memory_info]
|
1505 |
+
)
|
1506 |
+
|
1507 |
+
# Initialize on load
|
1508 |
+
demo.load(get_memory_stats, outputs=[memory_info])
|
1509 |
+
demo.load(
|
1510 |
+
lambda: update_local_models_dropdown(LOCAL_MODELS_BASE),
|
1511 |
+
outputs=[local_models_dropdown]
|
1512 |
+
)
|
1513 |
+
|
1514 |
+
# Enable queue for streaming
|
1515 |
+
demo.queue()
|