use openai oss
Browse files- src/Rag.py +82 -7
- src/__pycache__/Rag.cpython-313.pyc +0 -0
- src/__pycache__/google_sheets_uploader.cpython-313.pyc +0 -0
- src/app.py +16 -15
src/Rag.py
CHANGED
@@ -7,6 +7,7 @@ import numpy as np
|
|
7 |
from dotenv import load_dotenv
|
8 |
from sentence_transformers import SentenceTransformer
|
9 |
from together import Together
|
|
|
10 |
|
11 |
global db, referenced_tables_db, embedder, index, llm_client
|
12 |
|
@@ -121,6 +122,14 @@ def load_together_llm_client():
|
|
121 |
load_dotenv()
|
122 |
return Together(api_key=os.getenv("TOGETHER_API_KEY"))
|
123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
# -------- Prompt Construction --------
|
126 |
def construct_prompt(query, faiss_results):
|
@@ -193,6 +202,40 @@ def call_llm(llm_client, prompt, stream_flag=False, max_tokens=500, temperature=
|
|
193 |
traceback.print_exc()
|
194 |
raise
|
195 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
def call_ollama(prompt, model="mistral", stream_flag=False, max_tokens=500, temperature=0.05, top_p=0.9):
|
198 |
url = "http://localhost:11434/api/generate"
|
@@ -226,25 +269,57 @@ def launch_depression_assistant(embedder_name, designated_client=None):
|
|
226 |
index = load_cosine_index(embedder_name)
|
227 |
|
228 |
if designated_client is None:
|
229 |
-
print("
|
230 |
try:
|
231 |
-
llm_client =
|
232 |
-
|
233 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
else:
|
235 |
llm_client = designated_client
|
|
|
|
|
|
|
|
|
236 |
|
237 |
print("---------Depression Assistant is ready to use!--------------\n\n")
|
238 |
|
239 |
|
240 |
-
|
|
|
241 |
results = vector_search(query, embedder, db, index, referenced_tables_db, k=3)
|
242 |
prompt = construct_prompt_with_memory(query, results, chat_history=chat_history)
|
243 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
if llm_client == "Run Ollama Locally":
|
245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
else:
|
247 |
-
|
|
|
|
|
|
|
248 |
|
249 |
|
250 |
def load_queries_and_answers(query_file, answers_file):
|
|
|
7 |
from dotenv import load_dotenv
|
8 |
from sentence_transformers import SentenceTransformer
|
9 |
from together import Together
|
10 |
+
from openai import OpenAI
|
11 |
|
12 |
global db, referenced_tables_db, embedder, index, llm_client
|
13 |
|
|
|
122 |
load_dotenv()
|
123 |
return Together(api_key=os.getenv("TOGETHER_API_KEY"))
|
124 |
|
125 |
+
def load_nvidia_llm_client():
|
126 |
+
load_dotenv()
|
127 |
+
return OpenAI(
|
128 |
+
base_url="https://integrate.api.nvidia.com/v1",
|
129 |
+
api_key=os.getenv("NVIDIA_API_KEY"),
|
130 |
+
)
|
131 |
+
|
132 |
+
|
133 |
|
134 |
# -------- Prompt Construction --------
|
135 |
def construct_prompt(query, faiss_results):
|
|
|
202 |
traceback.print_exc()
|
203 |
raise
|
204 |
|
205 |
+
def call_nvidia_llm(llm_client, prompt, stream_flag=False, max_tokens=4096, temperature=0.6, top_p=0.7, model_name="openai/gpt-oss-20b"):
|
206 |
+
print(f"Calling NVIDIA LLM with model: {model_name}")
|
207 |
+
try:
|
208 |
+
if stream_flag:
|
209 |
+
def stream_generator():
|
210 |
+
completion = llm_client.chat.completions.create(
|
211 |
+
model=model_name,
|
212 |
+
messages=[{"role":"user","content": prompt}],
|
213 |
+
temperature=temperature,
|
214 |
+
top_p=top_p,
|
215 |
+
max_tokens=max_tokens,
|
216 |
+
stream=True
|
217 |
+
)
|
218 |
+
for chunk in completion:
|
219 |
+
if chunk.choices[0].delta.content is not None:
|
220 |
+
yield chunk.choices[0].delta.content
|
221 |
+
return stream_generator()
|
222 |
+
else:
|
223 |
+
completion = llm_client.chat.completions.create(
|
224 |
+
model=model_name,
|
225 |
+
messages=[{"role":"user","content": prompt}],
|
226 |
+
temperature=temperature,
|
227 |
+
top_p=top_p,
|
228 |
+
max_tokens=max_tokens,
|
229 |
+
stream=False
|
230 |
+
)
|
231 |
+
return completion.choices[0].message.content
|
232 |
+
except Exception as e:
|
233 |
+
print("Error in call_nvidia_llm:", str(e))
|
234 |
+
import traceback
|
235 |
+
traceback.print_exc()
|
236 |
+
raise
|
237 |
+
|
238 |
+
|
239 |
|
240 |
def call_ollama(prompt, model="mistral", stream_flag=False, max_tokens=500, temperature=0.05, top_p=0.9):
|
241 |
url = "http://localhost:11434/api/generate"
|
|
|
269 |
index = load_cosine_index(embedder_name)
|
270 |
|
271 |
if designated_client is None:
|
272 |
+
print("Attempting to load NVIDIA LLM client...")
|
273 |
try:
|
274 |
+
llm_client = load_nvidia_llm_client()
|
275 |
+
print("Successfully loaded NVIDIA LLM client.")
|
276 |
+
except Exception as e:
|
277 |
+
print(f"Failed to load NVIDIA LLM client: {e}")
|
278 |
+
print("Attempting to load Together LLM client as a fallback...")
|
279 |
+
try:
|
280 |
+
llm_client = load_together_llm_client()
|
281 |
+
print("Successfully loaded Together LLM client.")
|
282 |
+
except Exception as e:
|
283 |
+
print(f"Failed to load Together LLM client: {e}")
|
284 |
+
llm_client = None
|
285 |
else:
|
286 |
llm_client = designated_client
|
287 |
+
print(f"Using designated client: {type(llm_client).__name__}")
|
288 |
+
|
289 |
+
if llm_client is None:
|
290 |
+
print("Warning: No LLM client could be loaded. The assistant will not be able to generate responses.")
|
291 |
|
292 |
print("---------Depression Assistant is ready to use!--------------\n\n")
|
293 |
|
294 |
|
295 |
+
|
296 |
+
def depression_assistant(query, model_name=None, max_tokens=None, temperature=None, top_p=None, stream_flag=False, chat_history=None):
|
297 |
results = vector_search(query, embedder, db, index, referenced_tables_db, k=3)
|
298 |
prompt = construct_prompt_with_memory(query, results, chat_history=chat_history)
|
299 |
|
300 |
+
kwargs = {}
|
301 |
+
if model_name:
|
302 |
+
kwargs['model_name'] = model_name
|
303 |
+
if max_tokens:
|
304 |
+
kwargs['max_tokens'] = max_tokens
|
305 |
+
if temperature is not None:
|
306 |
+
kwargs['temperature'] = temperature
|
307 |
+
if top_p:
|
308 |
+
kwargs['top_p'] = top_p
|
309 |
+
|
310 |
if llm_client == "Run Ollama Locally":
|
311 |
+
if 'model_name' in kwargs:
|
312 |
+
kwargs['model'] = kwargs.pop('model_name')
|
313 |
+
return results, call_ollama(prompt, stream_flag=stream_flag, **kwargs)
|
314 |
+
elif isinstance(llm_client, OpenAI): # NVIDIA Client
|
315 |
+
return results, call_nvidia_llm(llm_client, prompt, stream_flag=stream_flag, **kwargs)
|
316 |
+
elif isinstance(llm_client, Together): # Together Client
|
317 |
+
return results, call_llm(llm_client, prompt, stream_flag=stream_flag, **kwargs)
|
318 |
else:
|
319 |
+
if llm_client is None:
|
320 |
+
raise ValueError("LLM client not initialized. Please check API keys.")
|
321 |
+
# Fallback to NVIDIA as requested
|
322 |
+
return results, call_nvidia_llm(llm_client, prompt, stream_flag=stream_flag, **kwargs)
|
323 |
|
324 |
|
325 |
def load_queries_and_answers(query_file, answers_file):
|
src/__pycache__/Rag.cpython-313.pyc
CHANGED
Binary files a/src/__pycache__/Rag.cpython-313.pyc and b/src/__pycache__/Rag.cpython-313.pyc differ
|
|
src/__pycache__/google_sheets_uploader.cpython-313.pyc
CHANGED
Binary files a/src/__pycache__/google_sheets_uploader.cpython-313.pyc and b/src/__pycache__/google_sheets_uploader.cpython-313.pyc differ
|
|
src/app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
from openai import OpenAI
|
4 |
from together import Together
|
5 |
import time
|
@@ -47,32 +47,33 @@ with st.sidebar:
|
|
47 |
if embedder_name == "Other":
|
48 |
embedder_name = st.text_input('Enter the embedder model name')
|
49 |
|
50 |
-
llm_client = Together(api_key=os.getenv("TOGETHER_API_KEY"))
|
51 |
-
|
52 |
if (not st.session_state.embedder_loaded or
|
53 |
st.session_state.current_embedder_name != embedder_name):
|
54 |
|
55 |
with st.spinner(f"Loading embedding model: {embedder_name}..."):
|
56 |
-
launch_depression_assistant(embedder_name=embedder_name
|
57 |
st.session_state.embedder_loaded = True
|
58 |
st.session_state.current_embedder_name = embedder_name
|
59 |
st.success(f"✅ Embedding model {embedder_name} loaded successfully!")
|
60 |
else:
|
61 |
st.info(f"📋 Current embedding model: {st.session_state.current_embedder_name}")
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
selected_model = st.selectbox('Choose a model for generation',
|
64 |
-
|
65 |
-
"deepseek-ai/deepseek-r1",
|
66 |
-
"meta/llama-3.3-70b-instruct"],
|
67 |
key='selected_model')
|
68 |
|
69 |
-
if selected_model in ["deepseek-ai/deepseek-r1", "meta/llama-3.3-70b-instruct"]:
|
70 |
-
max_length = 1000
|
71 |
-
llm_client = OpenAI(
|
72 |
-
base_url="https://integrate.api.nvidia.com/v1",
|
73 |
-
api_key=os.getenv("NVIDIA_API_KEY", None),
|
74 |
-
)
|
75 |
-
|
76 |
temperature = st.slider('temperature', min_value=0.01, max_value=1.0, value=0.05, step=0.01)
|
77 |
top_p = st.slider('top_p', min_value=0.01, max_value=1.0, value=0.9, step=0.01)
|
78 |
max_length = st.slider('max_length', min_value=100, max_value=1000, value=500, step=10)
|
@@ -145,7 +146,7 @@ with chat_col:
|
|
145 |
|
146 |
collected = ""
|
147 |
t0 = time.perf_counter()
|
148 |
-
results, response = depression_assistant(user_input, model_name=selected_model, max_tokens=max_length,
|
149 |
temperature=temperature, top_p=top_p, stream_flag=True,
|
150 |
chat_history=history)
|
151 |
|
|
|
1 |
import streamlit as st
|
2 |
+
import Rag
|
3 |
from openai import OpenAI
|
4 |
from together import Together
|
5 |
import time
|
|
|
47 |
if embedder_name == "Other":
|
48 |
embedder_name = st.text_input('Enter the embedder model name')
|
49 |
|
|
|
|
|
50 |
if (not st.session_state.embedder_loaded or
|
51 |
st.session_state.current_embedder_name != embedder_name):
|
52 |
|
53 |
with st.spinner(f"Loading embedding model: {embedder_name}..."):
|
54 |
+
Rag.launch_depression_assistant(embedder_name=embedder_name)
|
55 |
st.session_state.embedder_loaded = True
|
56 |
st.session_state.current_embedder_name = embedder_name
|
57 |
st.success(f"✅ Embedding model {embedder_name} loaded successfully!")
|
58 |
else:
|
59 |
st.info(f"📋 Current embedding model: {st.session_state.current_embedder_name}")
|
60 |
|
61 |
+
if isinstance(Rag.llm_client, OpenAI):
|
62 |
+
# NVIDIA client
|
63 |
+
model_list = ["openai/gpt-oss-20b"]
|
64 |
+
elif isinstance(Rag.llm_client, Together):
|
65 |
+
# Together client
|
66 |
+
model_list = ["meta-llama/Llama-3.3-70B-Instruct-Turbo-Free",
|
67 |
+
"deepseek-ai/deepseek-r1",
|
68 |
+
"meta/llama-3.3-70b-instruct"]
|
69 |
+
else:
|
70 |
+
# Default or unknown client
|
71 |
+
model_list = ["meta-llama/Llama-3.3-70B-Instruct-Turbo-Free"]
|
72 |
+
|
73 |
selected_model = st.selectbox('Choose a model for generation',
|
74 |
+
model_list,
|
|
|
|
|
75 |
key='selected_model')
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
temperature = st.slider('temperature', min_value=0.01, max_value=1.0, value=0.05, step=0.01)
|
78 |
top_p = st.slider('top_p', min_value=0.01, max_value=1.0, value=0.9, step=0.01)
|
79 |
max_length = st.slider('max_length', min_value=100, max_value=1000, value=500, step=10)
|
|
|
146 |
|
147 |
collected = ""
|
148 |
t0 = time.perf_counter()
|
149 |
+
results, response = Rag.depression_assistant(user_input, model_name=selected_model, max_tokens=max_length,
|
150 |
temperature=temperature, top_p=top_p, stream_flag=True,
|
151 |
chat_history=history)
|
152 |
|