import gradio as gr from fairseq.models.transformer import TransformerModel ko2en = TransformerModel.from_pretrained( 'model_artifact', checkpoint_file='checkpoint_best.pt', data_name_or_path='model_artifact', bpe='sentencepiece', sentencepiece_model='model_artifact/subword_tokenizer_ko.model', source_lang='ko', target_lang='en' ) def translate(input): return ko2en.translate(input) callback = gr.CSVLogger() with gr.Blocks() as demo: gr.Label('웹툰 번역기') input = gr.Textbox(label="Input") output = gr.Textbox(label="Output") input.submit(fn=translate, inputs=input, outputs=output) btn = gr.Button('오류보고') callback.setup([input, output], 'flagged') btn.click(lambda *args: callback.flag(args), [input, output], None, preprocess=False) demo.launch()