Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,110 @@
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
-
|
5 |
from model import ModelColorization
|
6 |
-
|
7 |
from utils import process_gs_image, inverse_transform_cs
|
8 |
|
9 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
model = ModelColorization().from_pretrained("sebastiansarasti/AutoEncoderImageColorization")
|
11 |
|
12 |
-
#
|
13 |
-
st.
|
14 |
-
st.
|
15 |
|
16 |
-
#
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
#
|
20 |
if uploaded_file is not None:
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
model.eval()
|
31 |
-
with torch.no_grad():
|
32 |
-
result = model(image)
|
33 |
-
# colorize the image
|
34 |
-
colorized_image = inverse_transform_cs(result.squeeze(0), original_size)
|
35 |
-
# display the colorized image
|
36 |
-
st.image(colorized_image, caption="Colorized Image.", use_container_width=True)
|
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
import torch
|
|
|
4 |
from model import ModelColorization
|
|
|
5 |
from utils import process_gs_image, inverse_transform_cs
|
6 |
|
7 |
+
# Custom CSS for styling
|
8 |
+
st.markdown(
|
9 |
+
"""
|
10 |
+
<style>
|
11 |
+
.main {
|
12 |
+
background-color: #f9f9f9;
|
13 |
+
}
|
14 |
+
.title {
|
15 |
+
color: #2a3f5f;
|
16 |
+
font-size: 2.5em;
|
17 |
+
text-align: center;
|
18 |
+
margin-bottom: 0.5em;
|
19 |
+
}
|
20 |
+
.subheader {
|
21 |
+
color: #5a5a5a;
|
22 |
+
font-size: 1.1em;
|
23 |
+
text-align: center;
|
24 |
+
margin-bottom: 2em;
|
25 |
+
}
|
26 |
+
.upload-box {
|
27 |
+
background-color: #ffffff;
|
28 |
+
border-radius: 10px;
|
29 |
+
padding: 2em;
|
30 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
31 |
+
margin-bottom: 2em;
|
32 |
+
}
|
33 |
+
.result-box {
|
34 |
+
background-color: #ffffff;
|
35 |
+
border-radius: 10px;
|
36 |
+
padding: 2em;
|
37 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
38 |
+
margin-top: 2em;
|
39 |
+
}
|
40 |
+
.stButton>button {
|
41 |
+
background-color: #4CAF50;
|
42 |
+
color: white;
|
43 |
+
border-radius: 5px;
|
44 |
+
padding: 0.5em 1em;
|
45 |
+
font-size: 1em;
|
46 |
+
width: 100%;
|
47 |
+
}
|
48 |
+
.stButton>button:hover {
|
49 |
+
background-color: #45a049;
|
50 |
+
}
|
51 |
+
.group-banner {
|
52 |
+
text-align: center;
|
53 |
+
font-size: 0.9em;
|
54 |
+
color: #777777;
|
55 |
+
margin-top: 2em;
|
56 |
+
}
|
57 |
+
</style>
|
58 |
+
""",
|
59 |
+
unsafe_allow_html=True
|
60 |
+
)
|
61 |
+
|
62 |
+
# Load model
|
63 |
model = ModelColorization().from_pretrained("sebastiansarasti/AutoEncoderImageColorization")
|
64 |
|
65 |
+
# App header
|
66 |
+
st.markdown('<p class="title">🎨 Neural Image Colorizer</p>', unsafe_allow_html=True)
|
67 |
+
st.markdown('<p class="subheader">Bring black & white photos to life with AI</p>', unsafe_allow_html=True)
|
68 |
|
69 |
+
# Upload section
|
70 |
+
with st.container():
|
71 |
+
st.markdown("### 📤 Upload Your Image")
|
72 |
+
uploaded_file = st.file_uploader(
|
73 |
+
"Choose a black & white photo...",
|
74 |
+
type=["jpg", "jpeg", "png"],
|
75 |
+
label_visibility="collapsed"
|
76 |
+
)
|
77 |
|
78 |
+
# Processing section
|
79 |
if uploaded_file is not None:
|
80 |
+
with st.container():
|
81 |
+
col1, col2 = st.columns(2)
|
82 |
+
with col1:
|
83 |
+
st.markdown("### ⬆ Original")
|
84 |
+
original_img = Image.open(uploaded_file)
|
85 |
+
st.image(original_img, use_column_width=True)
|
86 |
+
|
87 |
+
with col2:
|
88 |
+
st.markdown("### 🎨 Colorized")
|
89 |
+
if st.button("✨ Colorize Image", type="primary"):
|
90 |
+
with st.spinner("Colorizing your image..."):
|
91 |
+
# Process image
|
92 |
+
image, original_size = process_gs_image(original_img)
|
93 |
+
|
94 |
+
# Run model
|
95 |
+
model.eval()
|
96 |
+
with torch.no_grad():
|
97 |
+
result = model(image)
|
98 |
+
|
99 |
+
# Get colorized image
|
100 |
+
colorized_image = inverse_transform_cs(result.squeeze(0), original_size)
|
101 |
+
|
102 |
+
# Display result
|
103 |
+
st.image(colorized_image, use_column_width=True)
|
104 |
+
st.success("Colorization complete!")
|
105 |
|
106 |
+
# Footer
|
107 |
+
st.markdown(
|
108 |
+
'<p class="group-banner">Developed with ❤️ by Group 9 | Computer Vision Project</p>',
|
109 |
+
unsafe_allow_html=True
|
110 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|