Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,11 @@
|
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
-
import gradio as gr
|
4 |
from torchvision import transforms
|
5 |
from PIL import Image
|
|
|
6 |
|
7 |
-
# Define the model architecture
|
8 |
class BacterialMorphologyClassifier(nn.Module):
|
9 |
def __init__(self):
|
10 |
super(BacterialMorphologyClassifier, self).__init__()
|
@@ -22,6 +23,7 @@ class BacterialMorphologyClassifier(nn.Module):
|
|
22 |
nn.ReLU(),
|
23 |
nn.Dropout(0.5),
|
24 |
nn.Linear(128, 3),
|
|
|
25 |
)
|
26 |
|
27 |
def forward(self, x):
|
@@ -29,17 +31,11 @@ class BacterialMorphologyClassifier(nn.Module):
|
|
29 |
x = self.fc(x)
|
30 |
return x
|
31 |
|
32 |
-
# Load the model
|
33 |
-
MODEL_PATH = "https://huggingface.co/yolac/BacterialMorphologyClassification/resolve/main/model.pth"
|
34 |
model = BacterialMorphologyClassifier()
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
model.load_state_dict(state_dict, strict=False)
|
39 |
-
print("Model loaded successfully.")
|
40 |
-
except Exception as e:
|
41 |
-
print(f"Error loading model: {e}")
|
42 |
-
raise e
|
43 |
model.eval()
|
44 |
|
45 |
# Define image preprocessing transformations
|
@@ -49,41 +45,36 @@ transform = transforms.Compose([
|
|
49 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
50 |
])
|
51 |
|
52 |
-
#
|
53 |
-
class_labels = {0: 'cocci', 1: 'bacilli', 2: 'spirilla'}
|
54 |
-
|
55 |
-
# Prediction function
|
56 |
def predict(image):
|
57 |
try:
|
58 |
# Preprocess the image
|
59 |
image_tensor = transform(image).unsqueeze(0)
|
60 |
-
|
61 |
-
#
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
68 |
except Exception as e:
|
69 |
return {'error': str(e)}
|
70 |
|
71 |
-
#
|
72 |
-
example_images = [
|
73 |
-
"https://huggingface.co/datasets/yolac/BacterialMorphologyClassification/viewer?row=0&image-viewer=52B421CB70A43313B278D5DD2C58CECE56343012", # Replace with the actual paths to your example images
|
74 |
-
"https://huggingface.co/datasets/yolac/BacterialMorphologyClassification/viewer/default/train?p=2&row=201&image-viewer=558EA847F2267CECF4E2CFF6352F9D8888E9A72F",
|
75 |
-
"https://huggingface.co/datasets/yolac/BacterialMorphologyClassification/viewer/default/train?p=2&row=201&image-viewer=8FBAF2C52C256A392660811C5659788734821C3A"
|
76 |
-
]
|
77 |
-
|
78 |
-
# Set up Gradio interface with examples
|
79 |
iface = gr.Interface(
|
80 |
fn=predict,
|
81 |
-
inputs=gr.
|
82 |
-
outputs=gr.
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
86 |
)
|
87 |
|
88 |
# Launch the app
|
89 |
-
|
|
|
|
1 |
+
import gradio as gr
|
2 |
import torch
|
3 |
import torch.nn as nn
|
|
|
4 |
from torchvision import transforms
|
5 |
from PIL import Image
|
6 |
+
import io
|
7 |
|
8 |
+
# Define the model architecture that matches the saved .pth file
|
9 |
class BacterialMorphologyClassifier(nn.Module):
|
10 |
def __init__(self):
|
11 |
super(BacterialMorphologyClassifier, self).__init__()
|
|
|
23 |
nn.ReLU(),
|
24 |
nn.Dropout(0.5),
|
25 |
nn.Linear(128, 3),
|
26 |
+
nn.Softmax(dim=1),
|
27 |
)
|
28 |
|
29 |
def forward(self, x):
|
|
|
31 |
x = self.fc(x)
|
32 |
return x
|
33 |
|
34 |
+
# Load the model and weights
|
|
|
35 |
model = BacterialMorphologyClassifier()
|
36 |
+
MODEL_PATH = "https://huggingface.co/yolac/BacterialMorphologyClassification/resolve/main/model.pth"
|
37 |
+
state_dict = torch.hub.load_state_dict_from_url(MODEL_PATH, map_location=torch.device('cpu'))
|
38 |
+
model.load_state_dict(state_dict, strict=False)
|
|
|
|
|
|
|
|
|
|
|
39 |
model.eval()
|
40 |
|
41 |
# Define image preprocessing transformations
|
|
|
45 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
46 |
])
|
47 |
|
48 |
+
# Define Gradio interface
|
|
|
|
|
|
|
49 |
def predict(image):
|
50 |
try:
|
51 |
# Preprocess the image
|
52 |
image_tensor = transform(image).unsqueeze(0)
|
53 |
+
|
54 |
+
# Make prediction
|
55 |
+
output = model(image_tensor)
|
56 |
+
prediction = output.argmax().item()
|
57 |
+
|
58 |
+
# Class mapping
|
59 |
+
class_labels = {0: 'cocci', 1: 'bacilli', 2: 'spirilla'}
|
60 |
+
|
61 |
+
# Return prediction result
|
62 |
+
return class_labels[prediction], output.max().item()
|
63 |
except Exception as e:
|
64 |
return {'error': str(e)}
|
65 |
|
66 |
+
# Create the Gradio interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
iface = gr.Interface(
|
68 |
fn=predict,
|
69 |
+
inputs=gr.Image(type="pil", label="Upload an image"),
|
70 |
+
outputs=[gr.Label(num_top_classes=3, label="Predicted Class"), gr.Number(label="Confidence")],
|
71 |
+
examples=[
|
72 |
+
"https://huggingface.co/datasets/yolac/BacterialMorphologyClassification/viewer/default/train?p=2&row=201&image-viewer=8FBAF2C52C256A392660811C5659788734821C3A",
|
73 |
+
"https://huggingface.co/datasets/yolac/BacterialMorphologyClassification/viewer/default/train?p=2&image-viewer=AEF1AA2978EEB77362DA9CCC8792473666F7CDC6",
|
74 |
+
"https://huggingface.co/datasets/yolac/BacterialMorphologyClassification/viewer/default/train?image-viewer=C98E6CFAB26ECC3808C63185F6CCE90DE4E7C442"
|
75 |
+
]
|
76 |
)
|
77 |
|
78 |
# Launch the app
|
79 |
+
if __name__ == "__main__":
|
80 |
+
iface.launch()
|