Update app.py
Browse files
app.py
CHANGED
@@ -1,42 +1,78 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
from huggingface_hub import hf_hub_download
|
4 |
-
import numpy as np
|
5 |
from PIL import Image
|
|
|
|
|
6 |
|
7 |
-
# Define
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Load the model
|
13 |
-
|
14 |
-
model =
|
|
|
|
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
return image_array
|
22 |
|
23 |
-
#
|
24 |
def predict(image):
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
fn=predict,
|
34 |
-
inputs=gr.Image(
|
35 |
outputs="text",
|
36 |
-
title="Bacterial Morphology
|
37 |
-
description="
|
|
|
38 |
)
|
39 |
|
40 |
# Launch the app
|
41 |
-
|
42 |
-
interface.launch()
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
import gradio as gr
|
4 |
+
from torchvision import transforms
|
|
|
|
|
5 |
from PIL import Image
|
6 |
+
import requests
|
7 |
+
from io import BytesIO
|
8 |
|
9 |
+
# Define the PyTorch model architecture
|
10 |
+
class MyPyTorchModel(nn.Module):
|
11 |
+
def __init__(self):
|
12 |
+
super(MyPyTorchModel, self).__init__()
|
13 |
+
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)
|
14 |
+
self.relu = nn.ReLU()
|
15 |
+
self.flatten = nn.Flatten()
|
16 |
+
self.fc1 = nn.Linear(32 * 224 * 224, 3) # Adjust output size for 3 classes
|
17 |
+
|
18 |
+
def forward(self, x):
|
19 |
+
x = self.conv1(x)
|
20 |
+
x = self.relu(x)
|
21 |
+
x = self.flatten(x)
|
22 |
+
x = self.fc1(x)
|
23 |
+
return x
|
24 |
|
25 |
# Load the model
|
26 |
+
model_path = 'https://huggingface.co/yolac/BacterialMorphologyClassification/resolve/main/model.pth'
|
27 |
+
model = MyPyTorchModel()
|
28 |
+
model.load_state_dict(torch.load(model_path))
|
29 |
+
model.eval()
|
30 |
|
31 |
+
# Define image transformations
|
32 |
+
transform = transforms.Compose([
|
33 |
+
transforms.Resize((224, 224)),
|
34 |
+
transforms.ToTensor(),
|
35 |
+
])
|
|
|
36 |
|
37 |
+
# Define a function to predict the class of the image
|
38 |
def predict(image):
|
39 |
+
image = Image.fromarray(image).convert('RGB')
|
40 |
+
image = transform(image).unsqueeze(0)
|
41 |
+
|
42 |
+
with torch.no_grad():
|
43 |
+
outputs = model(image)
|
44 |
+
_, predicted = torch.max(outputs, 1)
|
45 |
+
|
46 |
+
class_labels = ['cocci', 'bacilli', 'spirilla']
|
47 |
+
predicted_label = class_labels[predicted.item()]
|
48 |
+
|
49 |
+
return predicted_label
|
50 |
+
|
51 |
+
# URLs for 3 example images
|
52 |
+
example_image_urls = [
|
53 |
+
"https://huggingface.co/datasets/yolac/BacterialMorphologyClassification/resolve/main/img%20290.jpg", # Replace with the actual URL
|
54 |
+
"https://huggingface.co/datasets/yolac/BacterialMorphologyClassification/resolve/main/img%20565.jpg", # Replace with the actual URL
|
55 |
+
"https://huggingface.co/datasets/yolac/BacterialMorphologyClassification/resolve/main/img%208.jpg", # Replace with the actual URL
|
56 |
+
]
|
57 |
+
|
58 |
+
# Function to download and open example images
|
59 |
+
def load_example_image(url):
|
60 |
+
response = requests.get(url)
|
61 |
+
image = Image.open(BytesIO(response.content))
|
62 |
+
return image
|
63 |
+
|
64 |
+
# Load the example images
|
65 |
+
example_images = [load_example_image(url) for url in example_image_urls]
|
66 |
+
|
67 |
+
# Create a Gradio interface
|
68 |
+
iface = gr.Interface(
|
69 |
fn=predict,
|
70 |
+
inputs=gr.inputs.Image(shape=(224, 224), label="Upload an image or use examples"),
|
71 |
outputs="text",
|
72 |
+
title="Bacterial Morphology Classifier",
|
73 |
+
description="Classify images of bacteria into cocci, bacilli, or spirilla.",
|
74 |
+
examples=example_images # Add example images to the Gradio app
|
75 |
)
|
76 |
|
77 |
# Launch the app
|
78 |
+
iface.launch()
|
|