Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,8 @@
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
|
|
3 |
from torchvision import transforms
|
4 |
from PIL import Image
|
5 |
-
import requests
|
6 |
-
import gradio as gr
|
7 |
-
import os
|
8 |
|
9 |
# Define the model architecture
|
10 |
class BacterialMorphologyClassifier(nn.Module):
|
@@ -24,7 +22,6 @@ class BacterialMorphologyClassifier(nn.Module):
|
|
24 |
nn.ReLU(),
|
25 |
nn.Dropout(0.5),
|
26 |
nn.Linear(128, 3),
|
27 |
-
nn.Softmax(dim=1),
|
28 |
)
|
29 |
|
30 |
def forward(self, x):
|
@@ -33,60 +30,52 @@ class BacterialMorphologyClassifier(nn.Module):
|
|
33 |
return x
|
34 |
|
35 |
# Load the model
|
36 |
-
MODEL_PATH = "model.pth"
|
37 |
model = BacterialMorphologyClassifier()
|
38 |
-
|
39 |
try:
|
40 |
-
# Download
|
41 |
-
|
42 |
-
|
43 |
-
url = "https://huggingface.co/yolac/BacterialMorphologyClassification/resolve/main/model.pth"
|
44 |
-
response = requests.get(url)
|
45 |
-
with open(MODEL_PATH, "wb") as f:
|
46 |
-
f.write(response.content)
|
47 |
-
# Load the model weights
|
48 |
-
model.load_state_dict(torch.load(MODEL_PATH, map_location=torch.device('cpu')), strict=False)
|
49 |
-
model.eval()
|
50 |
print("Model loaded successfully.")
|
51 |
except Exception as e:
|
52 |
-
print(f"Error loading
|
|
|
|
|
53 |
|
54 |
-
# Define image preprocessing
|
55 |
transform = transforms.Compose([
|
56 |
transforms.Resize((224, 224)),
|
57 |
transforms.ToTensor(),
|
58 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
59 |
])
|
60 |
|
|
|
|
|
|
|
61 |
# Prediction function
|
62 |
def predict(image):
|
63 |
try:
|
64 |
-
#
|
65 |
image_tensor = transform(image).unsqueeze(0)
|
66 |
-
|
67 |
-
# Perform
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
# Return the predicted class and confidence
|
75 |
-
predicted_class = class_labels[prediction]
|
76 |
-
confidence = output.max().item()
|
77 |
-
return f"Predicted Class: {predicted_class}\nConfidence: {confidence:.2f}"
|
78 |
except Exception as e:
|
79 |
-
return
|
80 |
|
81 |
# Set up Gradio interface
|
82 |
-
|
83 |
fn=predict,
|
84 |
-
inputs=gr.Image(type="pil"),
|
85 |
-
outputs=gr.
|
86 |
-
title="Bacterial Morphology
|
87 |
-
description="Upload an image of
|
88 |
)
|
89 |
|
90 |
# Launch the app
|
91 |
-
|
92 |
-
interface.launch()
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
+
import gradio as gr
|
4 |
from torchvision import transforms
|
5 |
from PIL import Image
|
|
|
|
|
|
|
6 |
|
7 |
# Define the model architecture
|
8 |
class BacterialMorphologyClassifier(nn.Module):
|
|
|
22 |
nn.ReLU(),
|
23 |
nn.Dropout(0.5),
|
24 |
nn.Linear(128, 3),
|
|
|
25 |
)
|
26 |
|
27 |
def forward(self, x):
|
|
|
30 |
return x
|
31 |
|
32 |
# Load the model
|
33 |
+
MODEL_PATH = "https://huggingface.co/yolac/BacterialMorphologyClassification/resolve/main/model.pth"
|
34 |
model = BacterialMorphologyClassifier()
|
|
|
35 |
try:
|
36 |
+
# Download and load model state_dict
|
37 |
+
state_dict = torch.hub.load_state_dict_from_url(MODEL_PATH, map_location=torch.device('cpu'))
|
38 |
+
model.load_state_dict(state_dict, strict=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
print("Model loaded successfully.")
|
40 |
except Exception as e:
|
41 |
+
print(f"Error loading model: {e}")
|
42 |
+
raise e
|
43 |
+
model.eval()
|
44 |
|
45 |
+
# Define image preprocessing transformations
|
46 |
transform = transforms.Compose([
|
47 |
transforms.Resize((224, 224)),
|
48 |
transforms.ToTensor(),
|
49 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
50 |
])
|
51 |
|
52 |
+
# Class labels
|
53 |
+
class_labels = {0: 'cocci', 1: 'bacilli', 2: 'spirilla'}
|
54 |
+
|
55 |
# Prediction function
|
56 |
def predict(image):
|
57 |
try:
|
58 |
+
# Preprocess the image
|
59 |
image_tensor = transform(image).unsqueeze(0)
|
60 |
+
|
61 |
+
# Perform inference
|
62 |
+
with torch.no_grad():
|
63 |
+
output = model(image_tensor)
|
64 |
+
prediction = output.argmax().item()
|
65 |
+
confidence = torch.nn.functional.softmax(output, dim=1).max().item()
|
66 |
+
|
67 |
+
return {class_labels[prediction]: confidence}
|
|
|
|
|
|
|
|
|
68 |
except Exception as e:
|
69 |
+
return {'error': str(e)}
|
70 |
|
71 |
# Set up Gradio interface
|
72 |
+
iface = gr.Interface(
|
73 |
fn=predict,
|
74 |
+
inputs=gr.inputs.Image(type="pil", label="Upload an image"),
|
75 |
+
outputs=gr.outputs.Label(num_top_classes=3, label="Predicted class and confidence"),
|
76 |
+
title="Bacterial Morphology Classifier",
|
77 |
+
description="Upload an image of a bacterial sample to classify it as 'cocci', 'bacilli', or 'spirilla'."
|
78 |
)
|
79 |
|
80 |
# Launch the app
|
81 |
+
iface.launch(server_name="0.0.0.0", server_port=5000, share=True)
|
|